Aircraft Microphysical and Surface-Based Radar Observations of Summertime Arctic Clouds

R. Paul Lawson SPEC, Inc., Boulder, Colorado

Search for other papers by R. Paul Lawson in
Current site
Google Scholar
PubMed
Close
and
Paquita Zuidema Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Paquita Zuidema in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Updated analyses of in situ microphysical properties of three Arctic cloud systems sampled by aircraft in July 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) are examined in detail and compared with surface-based millimeter Doppler radar. A fourth case is given a cursory examination. The clouds were at 78°N over a melting ice surface, in distinctly different yet typical synoptic conditions. The cases comprise a midlevel all-ice cloud on 8 July; a deep, weakly forced, layered, mixed-phase stratus cloud system with pockets of drizzle, large dendrites, rimed ice and aggregates on 18 July; and a deep, mixed-phase cloud system with embedded convection on 28 July followed by an all-water boundary layer cloud on 29 July. The new observations include measured ice water content exceeding 2 g m−3 on 18 and 28 July and 3-cm snowflakes and 5-mm graupel particles on 28 July, unexpected in clouds close to the North Pole. Radar–aircraft agreement in reflectivity and derived microphysical parameters was reasonably good for the all-water and all-ice cases. In contrast, agreement in radar–aircraft reflectivity and derived parameters was generally inconsistent and sometimes poor for the two mixed-phase cases. The inconsistent agreement in radar–aircraft retrievals may be a result of large uncertainties in both instrument platforms and the algorithms used to retrieve derived parameters. The data also suggest that (single-wavelength) radar alone may not be capable of accurately retrieving the microphysical effects of cloud drops and drizzle in mixed-phase clouds, especially radiative properties such as extinction, albedo, and optical depth. However, more research is required before this generalization can be considered conclusive.

Corresponding author address: R. Paul Lawson, 3022 Sterling Circle, Suite 200, Boulder, CO 80301. Email: plawson@specinc.com

Abstract

Updated analyses of in situ microphysical properties of three Arctic cloud systems sampled by aircraft in July 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) are examined in detail and compared with surface-based millimeter Doppler radar. A fourth case is given a cursory examination. The clouds were at 78°N over a melting ice surface, in distinctly different yet typical synoptic conditions. The cases comprise a midlevel all-ice cloud on 8 July; a deep, weakly forced, layered, mixed-phase stratus cloud system with pockets of drizzle, large dendrites, rimed ice and aggregates on 18 July; and a deep, mixed-phase cloud system with embedded convection on 28 July followed by an all-water boundary layer cloud on 29 July. The new observations include measured ice water content exceeding 2 g m−3 on 18 and 28 July and 3-cm snowflakes and 5-mm graupel particles on 28 July, unexpected in clouds close to the North Pole. Radar–aircraft agreement in reflectivity and derived microphysical parameters was reasonably good for the all-water and all-ice cases. In contrast, agreement in radar–aircraft reflectivity and derived parameters was generally inconsistent and sometimes poor for the two mixed-phase cases. The inconsistent agreement in radar–aircraft retrievals may be a result of large uncertainties in both instrument platforms and the algorithms used to retrieve derived parameters. The data also suggest that (single-wavelength) radar alone may not be capable of accurately retrieving the microphysical effects of cloud drops and drizzle in mixed-phase clouds, especially radiative properties such as extinction, albedo, and optical depth. However, more research is required before this generalization can be considered conclusive.

Corresponding author address: R. Paul Lawson, 3022 Sterling Circle, Suite 200, Boulder, CO 80301. Email: plawson@specinc.com

Save
  • Baker, B. A., and R. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45 , 12821290.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59-60 , 251264.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., M. A. Alexander, C. Deser, J. E. Walsh, J. S. Miller, M. Timlin, J. D. Scott, and R. Tomas, 2008: The atmospheric response to realistic reduced summer arctic sea ice anomalies. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 91–110.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., J. W. Strapp, and G. A. Isaac, 1996: An example of supercooled drizzle drops formed through a collision–coalescence process. J. Appl. Meteor., 35 , 22502260.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and A. V. Korolev, 2001: Assessing the Rosemount icing detector with in situ measurements. J. Atmos. Oceanic Technol., 18 , 515528.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • Curry, J. A., J. L. Schramm, D. K. Perovich, and J. O. Pinto, 2001: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J. Geophys. Res., 106 , 1534515355.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20 , 249261.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23 , 13571371.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–1996) and ocean (1954–1997) from surface observations worldwide. Oak Ridge National Laboratory Rep. ORNL/CDIAC–153, NDP–026E, 71 pp. [Available online at http://cdiac.ornl.gov/ftp/ndp026e/ndp026e.pdf].

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42 , 25232549.

  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor., 45 , 301317.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., C. Fairall, M. Shupe, P. Persson, E. L. Andreas, P. Guest, and R. Moritz, 2002: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107 , 8039. doi:10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., and Coauthors, 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Phys. Chem. Discuss., 9 , 53215370.

    • Search Google Scholar
    • Export Citation
  • Kay, J., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35 , L08503. doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., J. A. Curry, J. O. Pinto, M. Shupe, B. A. Baker, and K. Sassen, 2001: Modeling with explicit spectral water and ice microphysics of a two-layer cloud system of altostratus and cirrus observed during the FIRE Arctic Clouds Experiment. J. Geophys. Res., 106 , 1509915112.

    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds: Their Formation, Optical Properties, and Effects, P.V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22 , 528542.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and B. A. Baker, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part II: Applications to collected data. J. Appl. Meteor. Climatol., 45 , 12911303.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., A. V. Korolev, S. G. Cober, T. Huang, J. W. Strapp, and G. A. Isaac, 1998a: Improved measurements of the drop size distribution of a freezing drizzle event. Atmos. Res., 47-48 , 181191.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., R. E. Stewart, and L. J. Angus, 1998b: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55 , 32093229.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106 , 1498915014.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23 , 14621477.

    • Search Google Scholar
    • Export Citation
  • Leck, C., and E. K. Bigg, 2005: Source and evolution of the marine aerosol—A new perspective. Geophys. Res. Lett., 32 , L19803. doi:10.1029/2005GL023651.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., N. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse, 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates dataset. J. Geophys. Res., 113 , D00A15. doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., M. C. Serreze, and T. Agnew, 1999: On the record reduction in 1998 western Arctic sea-ice cover. Geophys. Res. Lett., 26 , 19051908.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., J. Key, C. W. Fowler, T. Nguyen, and X. Wang, 2001: Spatial and temporal variability of satellite-derived cloud and surface characteristics during FIRE-ACE. J. Geophys. Res., 106 , 1523315249.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S., A. V. Korolev, and A. J. Heymsfield, 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19 , 10031018.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S., M. Shupe, A. J. Heymsfield, and P. Zuidema, 2003: Ice cloud optical thickness and extinction estimates from radar measurements. J. Appl. Meteor., 42 , 15841597.

    • Search Google Scholar
    • Export Citation
  • Mazin, I. P., A. V. Korolev, A. Heymsfield, G. A. Isaac, and S. G. Cober, 2001: Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. J. Atmos. Oceanic Technol., 18 , 543558.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett., 34 , L12705. doi:10.1029/2007GL029897.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. Jones, and B. Light, 2008: Sunlight, water and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35 , L11501. doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55 , 20162038.

  • Politovich, M. K., 1989: Aircraft icing caused by large supercooled droplets. J. Appl. Meteor., 28 , 856868.

  • Reed, R. J., and B. A. Kunkel, 1960: The Arctic circulation in summer. J. Meteor., 17 , 489506.

  • Rogers, D. C., P. J. DeMott, and S. M. Kreidenweis, 2001: Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res., 106 , (D14). 1505315063.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 1988: Synoptic activity in the Arctic 1979–85. J. Climate, 1 , 12761295.

  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds.,. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A , 570586.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., W. F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18 , 11501170.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. Sereze, S. Drobot, S. Gearheard, M. Holland, J. Maslanik, W. Meier, and T. Scambos, 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89 .doi:10.1029/2008EO020001.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L-B., and L. A. Mysak, 1998: On the origin and evolution of sea-ice anomalies in the Beaufort-Chukchi Sea. Climate Dyn., 14 , 451460.

    • Search Google Scholar
    • Export Citation
  • Tschudi, M. A., J. A. Curry, and J. A. Maslanik, 2001: Airborne observations of summertime surface features and their effect on surface albedo during FIRE/SHEBA. J. Geophys. Res., 106 , 1533515344.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88 , 205221.

  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18 , 25582574.

    • Search Google Scholar
    • Export Citation
  • Wylie, D., 2001: Arctic weather during the FIRE/ACE flights in 1998. J. Geophys. Res., 106 , 1536315375.

  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17 , 23002317.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and R. Joyce, 2008: Water vapor, cloud liquid water paths, and rain rates over northern high-latitude open seas. J. Geophys. Res., 113 , D05205. doi:10.1029/2007JD009040.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2005: An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62 , 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 70 5
PDF Downloads 113 40 3