Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds

Joonsuk Lee Cooperative Institute for Climate Studies, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Joonsuk Lee in
Current site
Google Scholar
PubMed
Close
,
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
,
Andrew E. Dessler Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Andrew E. Dessler in
Current site
Google Scholar
PubMed
Close
,
Bo-Cai Gao Naval Research Laboratory, Washington, D.C

Search for other papers by Bo-Cai Gao in
Current site
Google Scholar
PubMed
Close
, and
Steven Platnick NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Steven Platnick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. “Thin” cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-μm channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as “clear sky” by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0–20 W m−2, depending on the optical depths of thin cirrus clouds.

Corresponding author address: Dr. Ping Yang, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. Email: pyang@ariel.met.tamu.edu

Abstract

To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. “Thin” cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-μm channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as “clear sky” by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0–20 W m−2, depending on the optical depths of thin cirrus clouds.

Corresponding author address: Dr. Ping Yang, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. Email: pyang@ariel.met.tamu.edu

Save
  • Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25 , 10731086.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 , 253264.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. Hu, P. F. Soulen, and S-C. Tsay, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. I. Data and models. J. Geophys. Res., 105 , 1176711780.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., G. Brogniez, and Y. Fouquart, 1998: Cirrus clouds’ microphysical properties deduced from POLDER observations. J. Quant. Spectrosc. Radiat. Transfer, 60 (3) 375390.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., P. Minnis, D. Young, L. Nguyen, and R. F. Arduini, 2002: Estimation of cirrus cloud effective ice crystal shapes using visible reflectances from dual-satellite measurements. J. Geophys. Res., 107 , 4730. doi:10.1029/2000JD000240.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., 18 , 16581673.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107 , 4714. doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16 , 12411247.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., S. P. Palm, W. D. Hart, and J. D. Spinhirne, 2006: Tropopause-level thin cirrus coverage revealed by ICESat/Geoscience Laser Altimeter System. J. Geophys. Res., 111 , D08203. doi:10.1029/2005JD006586.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97 , 38313836.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., S. Havemann, J-C. Thelen, and A. J. Baran, 2007: A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83 , 1935.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111 , D09S16. doi:10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K-N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11 , 22232237.

    • Search Google Scholar
    • Export Citation
  • Gao, B-C., and Y. J. Kaufman, 1995: Selection of 1.375-μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52 , 42314237.

    • Search Google Scholar
    • Export Citation
  • Gao, B-C., P. Yang, W. Han, R-R. Li, and W. J. Wiscombe, 2002: An algorithm using visible and 1.38-μm channels to retrieve cirrus clouds reflectances from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens., 40 , 16591668.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., H. Gerber, D. G. Baumgardner, C. H. Twohy, and E. M. Weinstock, 2003: Small, highly reflective ice crystals in low-latitude cirrus. Geophys. Res. Lett., 30 , 2132. doi:10.1029/2003GL018153.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and energy balance at the top of the atmosphere. J. Climate, 14 , 44954511.

    • Search Google Scholar
    • Export Citation
  • Henyey, L. G., and J. L. Greenstein, 1941: Diffuse radiation in the galaxy. Astrophys. J., 93 , 7083.

  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32 , 799808.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57 , 916938.

  • Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101 , 2136121375.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2002: A parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size. J. Geophys. Res., 107 , 4698. doi:10.1029/2001JD001429.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., P. Yang, B. A. Baum, and S. L. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107 , 4181. doi:10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K-N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness, and effective radius in the Arctic: Application of air-borne multispectral MAS data. J. Atmos. Oceanic Technol., 21 , 857875.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and T. Nauss, 2005: Satellite based retrieval of ice cloud properties using a semianalytical algorithm. J. Geophys. Res., 110 , D19206. doi:10.1029/2004JD005744.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Lynch, D. K., K. Sassen, D. O. Starr, and G. Stephens, Eds.,. 2002: Cirrus. Oxford University Press, 480 pp.

  • Mace, G. G., S. Benson, and S. Kato, 2006: Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 2. Vertical redistribution of radiant energy by clouds. J. Geophys. Res., 111 , D11S91. doi:10.1029/2005JD005922.

    • Search Google Scholar
    • Export Citation
  • Massie, S., A. Gettleman, W. Randel, and D. Baumgardner, 2002: Distribution of tropical cirrus in relation to convection. J. Geophys. Res., 107 , 4591. doi:10.1029/2001JD001293.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., T. P. Ackerman, M. P. Jensen, and W. E. Clements, 1998: Characteristics of the atmospheric state and the surface radiation budget at the tropical western Pacific ARM site. Geophys. Res. Lett., 25 , 45134516.

    • Search Google Scholar
    • Export Citation
  • Mayer, B., and A. Kylling, 2005: Technical note: The LibRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys., 5 , 18551877.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57 , 18411853.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59 , 24582478.

    • Search Google Scholar
    • Export Citation
  • Meyer, K., P. Yang, and B-C. Gao, 2004: Optical thickness of tropical cirrus clouds derived from the MODIS 0.66 and 1.38-μm channels. IEEE Trans. Geosci. Remote Sens., 42 , 833841.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., K-N. Liou, and Y. Takano, 1993a: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part I: Parameterization of radiance fields. J. Atmos. Sci., 50 , 12791304.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., P. W. Heck, and D. F. Young, 1993b: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part II: Verification of theoretical cirrus radiative properties. J. Atmos. Sci., 50 , 13051322.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 1995: Cloud optical property retrieval (subsystem 4.3). Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document, Volume III: Cloud Analyses and Radiance Inversions (Subsystem 4), NASA RP 1376, Vol. 3, 135–176.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong, 1996: Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53 , 29522966.

    • Search Google Scholar
    • Export Citation
  • Pfister, L., and Coauthors, 2001: Aircraft observation of thin cirrus clouds near the tropical tropopause. J. Geophys. Res., 106 , 97659786.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin, and J. H. Churnside, 1998: The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment. J. Atmos. Sci., 55 , 19771996.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and Y-C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 2. Validation and first results. J. Geophys. Res., 100 , 11671198. doi:10.1029/94JD02746.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., R. Holz, A. Chédin, D. L. Mitchell, and A. J. Baran, 1999: Retrieval of cirrus ice crystal sizes from 8.3 and 11.1 μm emissivities determined by the improved initialization inversion of TIROS-N Operational Vertical Sounder observations. J. Geophys. Res., 104 , 3179331808.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41 , 390409.

    • Search Google Scholar
    • Export Citation
  • Wang, P-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res., 101 , 2940729429.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and C. R. Trepte, 1998: Laminar cirrus observed near the tropical tropopause by LITE. Geophys. Res. Lett., 25 , 33513354.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K-N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105 , 46994718.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44 , 55125523.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H-L. Huang, M. D. King, and S. Platnick, 2007: Differences between collection 4 and 5 MODIS ice cloud optical/microphysical products and their impact on radiative forcing simulations. IEEE Trans. Geosci. Remote Sens., 45 , 28862899.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 568 267 21
PDF Downloads 415 152 17