A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System

J. Berner ECMWF, Reading, United Kingdom

Search for other papers by J. Berner in
Current site
Google Scholar
PubMed
Close
,
G. J. Shutts Met Office, Exeter, United Kingdom

Search for other papers by G. J. Shutts in
Current site
Google Scholar
PubMed
Close
,
M. Leutbecher ECMWF, Reading, United Kingdom

Search for other papers by M. Leutbecher in
Current site
Google Scholar
PubMed
Close
, and
T. N. Palmer ECMWF, Reading, United Kingdom

Search for other papers by T. N. Palmer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding model error in state-of-the-art numerical weather prediction models and representing its impact on flow-dependent predictability remains a complex and mostly unsolved problem. Here, a spectral stochastic kinetic energy backscatter scheme is used to simulate upscale-propagating errors caused by unresolved subgrid-scale processes. For this purpose, stochastic streamfunction perturbations are generated by autoregressive processes in spectral space and injected into regions where numerical integration schemes and parameterizations in the model lead to excessive systematic kinetic energy loss. It is demonstrated how output from coarse-grained high-resolution models can be used to inform the parameters of such a scheme. The performance of the spectral backscatter scheme is evaluated in the ensemble prediction system of the European Centre for Medium-Range Weather Forecasts. Its implementation in conjunction with reduced initial perturbations results in a better spread–error relationship, more realistic kinetic-energy spectra, a better representation of forecast-error growth, improved flow-dependent predictability, improved rainfall forecasts, and better probabilistic skill. The improvement is most pronounced in the tropics and for large-anomaly events.

It is found that whereas a simplified scheme assuming a constant dissipation rate already has some positive impact, the best results are obtained for flow-dependent formulations of the unresolved processes.

Corresponding author address: Dr. Judith Berner, NCAR, P.O. Box 3000, Boulder, CO 80307–3000. Email: berner@ucar.edu

Abstract

Understanding model error in state-of-the-art numerical weather prediction models and representing its impact on flow-dependent predictability remains a complex and mostly unsolved problem. Here, a spectral stochastic kinetic energy backscatter scheme is used to simulate upscale-propagating errors caused by unresolved subgrid-scale processes. For this purpose, stochastic streamfunction perturbations are generated by autoregressive processes in spectral space and injected into regions where numerical integration schemes and parameterizations in the model lead to excessive systematic kinetic energy loss. It is demonstrated how output from coarse-grained high-resolution models can be used to inform the parameters of such a scheme. The performance of the spectral backscatter scheme is evaluated in the ensemble prediction system of the European Centre for Medium-Range Weather Forecasts. Its implementation in conjunction with reduced initial perturbations results in a better spread–error relationship, more realistic kinetic-energy spectra, a better representation of forecast-error growth, improved flow-dependent predictability, improved rainfall forecasts, and better probabilistic skill. The improvement is most pronounced in the tropics and for large-anomaly events.

It is found that whereas a simplified scheme assuming a constant dissipation rate already has some positive impact, the best results are obtained for flow-dependent formulations of the unresolved processes.

Corresponding author address: Dr. Judith Berner, NCAR, P.O. Box 3000, Boulder, CO 80307–3000. Email: berner@ucar.edu

Save
  • Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J-F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127 , 685708.

    • Search Google Scholar
    • Export Citation
  • Berner, J., 2005: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci., 62 , 20982117.

    • Search Google Scholar
    • Export Citation
  • Berner, J., F. J. Doblas-Reyes, T. N. Palmer, G. Shutts, and A. Weisheimer, 2008: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philos. Trans. Roy. Soc., 366A , 25612579.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52 , 14341456.

  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133 , 10761097.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and A. G. Davies, 1997: Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci., 54 , 24752492.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and A. G. Davies, 2004: The regularized DIA closure for two-dimensional turbulence. Geophys. Astrophys. Fluid Dyn., 98 , 203223.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and S. M. Kepert, 2006: Dynamical subgrid-scale parameterizations from direct numerical simulations. J. Atmos. Sci., 63 , 30063019.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, J. Mahlman, and L. Umscheid, 1995: Climatology of the SKYHI troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 52 , 543.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I., and D. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley, 240 pp.

  • Katz, R. W., and A. H. Murphy, Eds. 1997: Economic Value of Weather and Climate Forecasts. Cambridge University Press, 222 pp.

  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere stratosphere mesosphere GCM. J. Atmos. Sci., 58 , 329348.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1978: Objective methods for weather prediction. Annu. Rev. Fluid Mech., 10 , 107128.

  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227 , 35153539.

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40 , 749761.

  • Lin, J. W-B., and J. D. Neelin, 2002: Considerations for stochastic convective parameterization. J. Atmos. Sci., 59 , 959975.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Mason, P., and D. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242 , 5178.

  • Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119 , 269298.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127 , 279304.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, R. Hagedorn, A. Lawrence, M. Leutbecher, and L. Smith, 2006: Ensemble prediction: A pedagogical perspective. ECMWF Newsletter, No. 106, ECMWF, Reading, United Kingdom, 10–17.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 2003a: Noise out of chaos and why it won’t go away. Bull. Amer. Meteor. Soc., 84 , 921925.

  • Penland, C., 2003b: A stochastic approach to nonlinear dynamics: A review. Bull. Amer. Meteor. Soc., 84 , ES43ES51.

  • Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127 , 709731.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M., 2006: Comparing and combining deterministic and ensemble forecasts: How to predict rainfall occurrence better. ECMWF Newsletter, No. 106, ECMWF, Reading, United Kingdom, 17–23.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65 , 10631076.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and L. Smith, 2002: Evaluating probabilistic forecasts using information theory. Mon. Wea. Rev., 130 , 16531660.

  • Saetra, O., H. Hersbach, J-R. Bidlot, and D. Richardson, 2004: Effects of observation errors on the statistics for ensemble spread and reliability. Mon. Wea. Rev., 132 , 14871501.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., C. Penland, and M. Newman, 2001: Rossby waves in a fluctuating medium. Stochastic Climate Models, P. Imkeller and J. S. von Storch, Eds., Vol. 49, Progress in Probability, Birkäuser Verlag, 369–384.

    • Search Google Scholar
    • Export Citation
  • Schubert, W., J. Hack, P. L. Silva Dias, and S. Fulton, 1980: Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sci., 37 , 14641484.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 612 , 30793102.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 2008: The forcing of large-scale waves in an explicit simulation of deep tropical convection. Dyn. Atmos. Oceans, 45 , 125.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and M. E. B. Gray, 1994: A numerical modelling study of the geostrophic adjustment following deep convection. Quart. J. Roy. Meteor. Soc., 120 , 11451178.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and T. N. Palmer, 2007: Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem. J. Climate, 20 , 187202.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Steinheimer, M., M. Hantel, and P. Bechtold, 2007: Convection in Lorenz’s global energy cycle with the ECMWF model. ECMWF Tech. Memo 545, 39 pp. [Available online at http://www.ecmwf.int/publications/.].

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and J. Berner, 2008: A stochastic convective approach to account for model uncertainity due to unresolved humidity variability. J. Geophys. Res., 113 , D18101. doi:10.1029/2007JD009284.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

  • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132 , 703713.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10 , 6582.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1656 712 63
PDF Downloads 969 334 32