Analysis of Convective Transport and Parameter Sensitivity in a Single Column Version of the Goddard Earth Observation System, Version 5, General Circulation Model

L. E. Ott Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by L. E. Ott in
Current site
Google Scholar
PubMed
Close
,
J. Bacmeister Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by J. Bacmeister in
Current site
Google Scholar
PubMed
Close
,
S. Pawson Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by S. Pawson in
Current site
Google Scholar
PubMed
Close
,
K. Pickering NASA GSFC, Greenbelt, Maryland

Search for other papers by K. Pickering in
Current site
Google Scholar
PubMed
Close
,
G. Stenchikov Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by G. Stenchikov in
Current site
Google Scholar
PubMed
Close
,
M. Suarez Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by M. Suarez in
Current site
Google Scholar
PubMed
Close
,
H. Huntrieser Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by H. Huntrieser in
Current site
Google Scholar
PubMed
Close
,
M. Loewenstein *NASA ARC, Moffett Field, California

Search for other papers by M. Loewenstein in
Current site
Google Scholar
PubMed
Close
,
J. Lopez Bay Area Environmental Research Institute, Sonoma, California

Search for other papers by J. Lopez in
Current site
Google Scholar
PubMed
Close
, and
I. Xueref-Remy Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA/CNRS 1572, Gif-sur-Yvette, France

Search for other papers by I. Xueref-Remy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convection strongly influences the distribution of atmospheric trace gases. General circulation models (GCMs) use convective mass fluxes calculated by parameterizations to transport gases, but the results are difficult to compare with trace gas observations because of differences in scale. The high resolution of cloud-resolving models (CRMs) facilitates direct comparison with aircraft observations. Averaged over a sufficient area, CRM results yield a validated product directly comparable to output from a single global model grid column. This study presents comparisons of vertical profiles of convective mass flux and trace gas mixing ratios derived from CRM and single column model (SCM) simulations of storms observed during three field campaigns. In all three cases, SCM simulations underpredicted convective mass flux relative to CRM simulations. As a result, the SCM simulations produced lower trace gas mixing ratios in the upper troposphere in two of the three storms than did the CRM simulations.

The impact of parameter sensitivity in the moist physics schemes employed in the SCM has also been examined. Statistical techniques identified the most significant parameters influencing convective transport. Convective mass fluxes are shown to be strongly dependent on chosen parameter values. Results show that altered parameter settings can substantially improve the comparison between SCM and CRM convective mass flux. Upper tropospheric trace gas mixing ratios were also improved in two storms. In the remaining storm, the SCM representation of CO2 was not improved because of differences in entrainment and detrainment levels in the CRM and SCM simulations.

Corresponding author address: Lesley Ott, Global Modeling and Assimilation Office, Code 610.1, Goddard Space Flight Center, Greenbelt, MD 20771. Email: lesley.e.ott@nasa.gov

Abstract

Convection strongly influences the distribution of atmospheric trace gases. General circulation models (GCMs) use convective mass fluxes calculated by parameterizations to transport gases, but the results are difficult to compare with trace gas observations because of differences in scale. The high resolution of cloud-resolving models (CRMs) facilitates direct comparison with aircraft observations. Averaged over a sufficient area, CRM results yield a validated product directly comparable to output from a single global model grid column. This study presents comparisons of vertical profiles of convective mass flux and trace gas mixing ratios derived from CRM and single column model (SCM) simulations of storms observed during three field campaigns. In all three cases, SCM simulations underpredicted convective mass flux relative to CRM simulations. As a result, the SCM simulations produced lower trace gas mixing ratios in the upper troposphere in two of the three storms than did the CRM simulations.

The impact of parameter sensitivity in the moist physics schemes employed in the SCM has also been examined. Statistical techniques identified the most significant parameters influencing convective transport. Convective mass fluxes are shown to be strongly dependent on chosen parameter values. Results show that altered parameter settings can substantially improve the comparison between SCM and CRM convective mass flux. Upper tropospheric trace gas mixing ratios were also improved in two storms. In the remaining storm, the SCM representation of CO2 was not improved because of differences in entrainment and detrainment levels in the CRM and SCM simulations.

Corresponding author address: Lesley Ott, Global Modeling and Assimilation Office, Code 610.1, Goddard Space Flight Center, Greenbelt, MD 20771. Email: lesley.e.ott@nasa.gov

Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., cited. 2005: GEOS-5 SYSTEM: Moist physics parameterizations. [Available online at http://gmao.gsfc.nasa.gov/systems/geos5/STRUCTURE/AGCM/Moist.php.].

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63 , 33833403.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., S-W. Kim, W. C. Skamarock, A. L. Stuart, K. E. Pickering, and L. E. Ott, 2007a: Simulations of the redistribution of formaldehyde, formic acid, and peroxides in the 10 July 1996 Stratospheric–Tropospheric Experiment: Radiation, Aerosols, and Ozone deep convection storm. J. Geophys. Res., 112 , D13310. doi:10.1029/2006JD008046.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and Coauthors, 2007b: Cloud-scale model intercomparison of chemical constituent transport in deep convection. Atmos. Chem. Phys., 7 , 47094731.

    • Search Google Scholar
    • Export Citation
  • Bastidas, L. A., H. V. Gupta, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang, 1999: Sensitivity analysis of a land surface scheme using multicriteria methods. J. Geophys. Res., 104 , 1948119490.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., and Coauthors, 2000: A GCSS intercomparison for a tropical squall line observed during TOGA COARE. II: Intercomparison of single-column models and a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 126 , 865888.

    • Search Google Scholar
    • Export Citation
  • Bey, I., D. J. Jacob, J. A. Logan, and R. M. Yantosca, 2001: Asian chemical outflow to the Pacific: Origins, pathways, and budgets. J. Geophys. Res., 106 , 2309723113.

    • Search Google Scholar
    • Export Citation
  • DeCaria, A. J., 2000: Effects of convection and lightning on tropospheric chemistry studied with cloud, transport, and chemistry models. Ph.D. dissertation, University of Maryland, College Park, 169 pp.

  • DeCaria, A. J., K. E. Pickering, G. L. Stenchikov, and L. E. Ott, 2005: Lightning-generated NOX and its impact on tropospheric ozone production: A three-dimensional modeling study of a Stratosphere–Troposphere Experiment: Radiation, Aerosols, and Ozone (STERAO-A) thunderstorm. J. Geophys. Res., 110 , D14303. doi:10.1029/2004JD005556.

    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235 , 460465.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50 , 889906.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., L. W. Horowitz, A. M. Fiore, C. J. Seman, D. R. Blake, and N. J. Blake, 2007: Transport of radon-222 and methyl iodide by deep convection in the GFDL global atmospheric model AM2. J. Geophys. Res., 112 , D17303. doi:10.1029/2006JD007548.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 2000: An overview of the Stratospheric–Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO) deep convection experiment with results for the July 10, 1996 storm. J. Geophys. Res., 105 , 1002310045.

    • Search Google Scholar
    • Export Citation
  • Fehr, T., H. Höller, and H. Huntrieser, 2004: Model study on production and transport of lightning-produced NOx in a EULINOX supercell storm. J. Geophys. Res., 109 , D09102. doi:10.1029/2003JD003935.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., and Coauthors, 2006: Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: Implications for the water vapor budget. J. Geophys. Res., 111 , D23304. doi:10.1029/2006JD007325.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and M. J. Miller, 1989: A numerical study of the parametrization of deep tropical convection. Quart. J. Roy. Meteor. Soc., 115 , 12091241.

    • Search Google Scholar
    • Export Citation
  • Höller, H., and U. Schumann, Eds. 2000: EULINOX—The European Lightning Nitrogen Oxides Project. Tech. Rep. DLR-FB 2000-28, Deutsches Zentrum für Luft- und Raumfahrt, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Höller, H., H. Huntrieser, C. Feigl, C. Théry, P. Laroche, U. Finke, and J. Seltmann, 2000: The severe storms of 21 July 1998—Evolution and implications for NOX production. EULINOX—The European Lightning Nitrogen Oxides Experiment, Tech. Rep. DLR-FB 2000-28, Deutsches Zentrum für Luft- und Raumfahrt, 109–128.

    • Search Google Scholar
    • Export Citation
  • Hornberger, G. M., and R. C. Spear, 1981: An approach to the preliminary analysis of environmental systems. J. Environ. Manage., 12 , 718.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., and Coauthors, 2002: Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment. J. Geophys. Res., 107 , 4113. doi:10.1029/2000JD000209.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth, 2004: Exploring parameter sensitivities of the land surface using a locally coupled land–atmosphere model. J. Geophys. Res., 109 , D21101. doi:10.1029/2004JD004730.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128 , 31873199.

    • Search Google Scholar
    • Export Citation
  • Loewenstein, M., and Coauthors, 2003: Biomass burning signatures in CO observed during CRYSTAL-FACE. Proc. CRYSTAL-FACE Science Team Meeting, Salt Lake City, UT, NASA, 2-17. [Available online at http://www.espo.nasa.gov/crystalface/presentations_files/Posters/2-17_Loewenstein.pdf.].

    • Search Google Scholar
    • Export Citation
  • Lopez, J. P., and Coauthors, 2006: CO signatures in subtropical convective clouds and anvils during CRYSTAL-FACE: An analysis of convective transport and entrainment using observations and a cloud-resolving model. J. Geophys. Res., 111 , D09305. doi:10.1029/2005JD006104.

    • Search Google Scholar
    • Export Citation
  • Louis, J-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Luo, Y., S. K. Krueger, and K-M. Xu, 2006: Cloud properties simulated by a single-column model. Part II: Evaluation of cumulus detrainment and ice-phase microphysics using a cloud-resolving model. J. Atmos. Sci., 63 , 28312847.

    • Search Google Scholar
    • Export Citation
  • Madronich, S., 1987: Photodissociation in the atmosphere: 1. Actinic fluxes and the effects of ground reflections and clouds. J. Geophys. Res., 92 , 97409752.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Ott, L. E., K. E. Pickering, G. L. Stenchikov, H. Huntrieser, and U. Schumann, 2007: Effects of lightning NOx production during the 21 July European Lightning Nitrogen Oxides Project storm studied with a three-dimensional cloud-scale chemical transport model. J. Geophys. Res., 112 , D05307. doi:10.1029/2006JD007365.

    • Search Google Scholar
    • Export Citation
  • Park, R. J., G. L. Stenchikov, K. E. Pickering, R. R. Dickerson, D. J. Allen, and S. Kondragunta, 2001: Regional air pollution and its radiative forcing: Studies with a single-column chemical and radiation transport model. J. Geophys. Res., 106 , 2875128770.

    • Search Google Scholar
    • Export Citation
  • Pickering, K. E., A. M. Thompson, J. R. Scala, W-K. Tao, R. R. Dickerson, and J. Simpson, 1992: Free tropospheric ozone production following entrainment of urban plumes into deep convection. J. Geophys. Res., 97 , 1798518000.

    • Search Google Scholar
    • Export Citation
  • Pickering, K. E., A. M. Thompson, W-K. Tao, R. B. Rood, D. P. McNamara, and A. M. Molod, 1995: Vertical transport by convective clouds: Comparisons of three modeling approaches. Geophys. Res. Lett., 22 , 10891092.

    • Search Google Scholar
    • Export Citation
  • Pickering, K. E., and Coauthors, 1996: Convective transport of biomass burning emissions over Brazil during TRACE A. J. Geophys. Res., 101 , 2399324012.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., and Coauthors, 2000: A GCSS model intercomparison for a tropical squall line observed during TOGA COARE. 1. Cloud-resolving models. Quart. J. Roy. Meteor. Soc., 126 , 823863.

    • Search Google Scholar
    • Export Citation
  • Ridley, B. A., and Coauthors, 2004: Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere. J. Geophys. Res., 109 , D17305. doi:10.1029/2004JD004769.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2007: The GEOS-5 Data Assimilation System: Documentation of versions 5.0.1 and 5.1.0. NASA Tech. Doc. NASA/TM-2007-104606, Vol. 27, 95 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/GEOS-5.0.1_Documentation_r3.pdf.].

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., and Coauthors, 2000: Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations. Mon. Wea. Rev., 128 , 32183235.

    • Search Google Scholar
    • Export Citation
  • Salzmann, M., M. G. Lawrence, V. T. J. Phillips, and L. J. Donner, 2004: Modelling tracer transport by a cumulus ensemble: Lateral boundary conditions and large-scale ascent. Atmos. Chem. Phys., 4 , 17971811.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97 , 471489.

  • Skamarock, W. C., and Coauthors, 2000: Numerical simulations of the July 10 Stratospheric–Tropospheric Experiment: Radiation, Aerosols, and Ozone/Deep Convection Experiment convective system: Kinematics and transport. J. Geophys. Res., 105 , 1997319990.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. E. Dye, E. Defer, M. C. Barth, J. L. Stith, B. A. Ridley, and K. Baumann, 2003: Observational- and modeling-based budget of lightning-produced NOx in a continental thunderstorm. J. Geophys. Res., 108 , 4305. doi:10.1029/2002JD002163.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., and Coauthors, 1996: Stratosphere–troposphere exchange in a mid-latitude mesoscale convective complex. 2. Numerical simulations. J. Geophys. Res., 101 , 68376851.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., K. Pickering, A. DeCaria, W-K. Tao, J. Scala, L. Ott, D. Bartels, and T. Matejka, 2005: Simulation of the fine structure of the 12 July 1996 Stratosphere–Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) storm accounting for effects of terrain and interaction with mesoscale flow. J. Geophys. Res., 110 , D14304. doi:10.1029/2004JD005582.

    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., A. R. Douglass, J. E. Nielsen, and K. A. Boering, 1998: The CO2 seasonal cycle as a tracer of transport. J. Geophys. Res., 103 , 1372913741.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 3572.

  • Tao, W-K., and Coauthors, 2003a: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2003b: Regional-scale modeling at NASA Goddard Space Flight Center. Recent Res. Dev. Atmos. Sci., 2 , 152.

  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., J. A. Ridout, S. Xie, and M. Zhang, 2002: Variational objective analysis for atmospheric field programs: A model assessment. J. Atmos. Sci., 59 , 34363456.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., 1995: Partitioning mass, heat, and moisture budgets of explicitly simulated cumulus ensembles into convective and stratiform components. J. Atmos. Sci., 52 , 551573.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and A. Arakawa, 1992: Semiprognostic tests of the Arakawa–Schubert cumulus parameterization using simulated data. J. Atmos. Sci., 49 , 24212436.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53 , 30843102.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. Gelaro, 2008: Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon. Wea. Rev., 136 , 335351.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 79 11
PDF Downloads 122 33 3