Sensitivity of the Upper Mesosphere to the Lorenz Energy Cycle of the Troposphere

Erich Becker Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany

Search for other papers by Erich Becker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The concept of a mechanistic general circulation model that explicitly simulates the gravity wave drag in the extratropical upper mesosphere in a self-consistent fashion is proposed. The methodology consists of 1) a standard spectral dynamical core with high resolution, 2) idealized formulations of radiative and latent heating, and 3) a hydrodynamically consistent turbulent diffusion scheme with the diffusion coefficients based on Smagorinsky’s generalized mixing-length formulation and scaled by the Richardson criterion. The model reproduces various mean and variable features of the wave-driven general circulation from the boundary layer to the mesopause region during January.

The dissipation of mesoscale kinetic energy (defined as the frictional heating due to the mesoscale flow) in the extratropical troposphere is found to indicate the tropospheric gravity wave sources relevant for the mesosphere/lower thermosphere. This motivates a sensitivity experiment in which the large-scale differential heating is perturbed such that the Lorenz energy cycle as measured by the globally integrated frictional heating becomes stronger. As a result, both the resolved gravity wave activity and the dissipation of mesoscale kinetic energy in the extratropical troposphere are amplified. These changes have strong remote effects in the summer mesopause region, where the gravity wave drag, the residual meridional wind, and the frictional heating shift to lower altitudes. Furthermore, temperatures decrease below the summer mesopause and increase farther up, which is accompanied by an anomalous eastward wind component around the mesopause.

Corresponding author address: Erich Becker, Leibniz Institute of Atmospheric Physics, Schlossstr. 6, 18225 Kühlungsborn, Germany. Email: becker@iap-kborn.de

Abstract

The concept of a mechanistic general circulation model that explicitly simulates the gravity wave drag in the extratropical upper mesosphere in a self-consistent fashion is proposed. The methodology consists of 1) a standard spectral dynamical core with high resolution, 2) idealized formulations of radiative and latent heating, and 3) a hydrodynamically consistent turbulent diffusion scheme with the diffusion coefficients based on Smagorinsky’s generalized mixing-length formulation and scaled by the Richardson criterion. The model reproduces various mean and variable features of the wave-driven general circulation from the boundary layer to the mesopause region during January.

The dissipation of mesoscale kinetic energy (defined as the frictional heating due to the mesoscale flow) in the extratropical troposphere is found to indicate the tropospheric gravity wave sources relevant for the mesosphere/lower thermosphere. This motivates a sensitivity experiment in which the large-scale differential heating is perturbed such that the Lorenz energy cycle as measured by the globally integrated frictional heating becomes stronger. As a result, both the resolved gravity wave activity and the dissipation of mesoscale kinetic energy in the extratropical troposphere are amplified. These changes have strong remote effects in the summer mesopause region, where the gravity wave drag, the residual meridional wind, and the frictional heating shift to lower altitudes. Furthermore, temperatures decrease below the summer mesopause and increase farther up, which is accompanied by an anomalous eastward wind component around the mesopause.

Corresponding author address: Erich Becker, Leibniz Institute of Atmospheric Physics, Schlossstr. 6, 18225 Kühlungsborn, Germany. Email: becker@iap-kborn.de

Save
  • Achatz, U., 2007a: Gravity-wave breaking: Linear and primary nonlinear dynamics. Adv. Space Res., 40 , 719733.

  • Achatz, U., 2007b: The primary nonlinear dynamics of modal and nonmodal perturbations of monochromatic inertia–gravity waves. J. Atmos. Sci., 64 , 7495.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Becker, E., 2003: Frictional heating in global climate models. Mon. Wea. Rev., 131 , 508520.

  • Becker, E., 2004: Direct heating rates associated with gravity wave saturation. J. Atmos. Solar Terr. Phys., 66 , 683696.

  • Becker, E., and G. Schmitz, 2003: Climatological effects of orography and land–sea heating contrasts on the gravity wave–driven circulation of the mesosphere. J. Atmos. Sci., 60 , 103118.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and D. C. Fritts, 2006: Enhanced gravity–wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002. Ann. Geophys., 24 , 11751188.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and U. Burkhardt, 2007: Nonlinear horizontal diffusion for GCMs. Mon. Wea. Rev., 135 , 14391454.

  • Becker, E., A. Müllemann, F-J. Lübken, H. Körnich, P. Hoffmann, and M. Rapp, 2004: High Rossby-wave activity in austral winter 2002: Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program. Geophys. Res. Lett., 31 , L24S03. doi:10.1029/2004GL019615.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110 , D10108. doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4 , 469485.

  • Boville, B. A., and C. S. Bretherton, 2003: Heating and kinetic energy dissipation in the NCAR Community Atmosphere Model. J. Climate, 16 , 38773887.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2002: Energy-conserving discretisation of turbulent shear and buoyancy production. Ocean Modell., 4 , 347361.

  • Burkhardt, U., and E. Becker, 2006: A consistent diffusion–dissipation parameterization in the ECHAM climate model. Mon. Wea. Rev., 134 , 11941204.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59 , 923941.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1991: Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving. J. Atmos. Sci., 48 , 236263.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd, 2002: Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations. J. Geophys. Res., 107 , 4087. doi:10.1029/2001JD000479.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., A. I. Jonsson, S. R. Beagley, K. Semeniuk, J. de Grandpré, C. McLandress, and T. G. Shepherd, 2007: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model. J. Climate, 20 , 11211144.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. E. VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 50 , 36853694.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Grave wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112 , D09301. doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Goldberg, R. A., and Coauthors, 2004: The MaCWAVE/MIDAS rocket and ground-based measurements of polar summer dynamics: Overview and mean state structure. Geophys. Res. Lett., 31 , L24S02. doi:10.1029/2004GL019411.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 2006: High resolution simulations of atmospheric and oceanic circulation. EOS, Trans. Amer. Geophys. Union, 87 , 176. doi:10.1029/2006EO180010.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 2008: Numerical resolution and modelling of the global atmospheric circulation: A review of our current understanding and outstanding issues. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer-Verlag, 7–28.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, J. D. Mahlman, and L. J. Umscheid, 1995: Climatology of the SKYHI troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 52 , 543.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution version of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56 , 38293846.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John. W. Miles. J. Fluid Mech., 10 , 509512.

  • Karlsson, B., H. Körnich, and J. Gumbel, 2007: Evidence for interhemispheric stratosphere–mesosphere coupling derived from noctilucent cloud properties. Geophys. Res. Lett., 34 , L16806. doi:10.1029/2007GL030282.

    • Search Google Scholar
    • Export Citation
  • Karlsson, B., C. McLandress, and T. G. Shepherd, 2009: Inter-hemispheric mesospheric coupling in a comprehensive middle atmosphere model. J. Atmos. Solar-Terr. Phys., doi:10.1016/j.jastp.2008.8.006.

    • Search Google Scholar
    • Export Citation
  • Kirkwood, S., V. Barabash, B. U. E. Brändström, A. Moström, K. Stebel, N. Mitchell, and W. Hocking, 2002: Noctilucent clouds, PMSE and 5-day planetary waves: A case study. Geophys. Res. Lett., 29 , 1411. doi:10.1029/2001GL014022.

    • Search Google Scholar
    • Export Citation
  • Körnich, H., G. Schmitz, and E. Becker, 2006: The role of stationary waves in the maintenance of the northern annular mode as deduced from model experiments. J. Atmos. Sci., 63 , 29312947.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58 , 329348.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., 1999: Eliassen–Palm fluxes of the 2-day wave. J. Atmos. Sci., 56 , 28462861. ; Corrigendum, 59, 2625–2627.

  • Lieberman, R. S., and Coauthors, 2003: The 6.5-day wave in the mesosphere and lower thermosphere: Evidence for baroclinic/barotropic instability. J. Geophys. Res., 108 , 4640. doi:10.1029/2002JD003349.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14A , 148172.

  • Lindzen, R. S., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117 , 25752583.

  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. WMO Monograph, Vol. 218, World Meteorological Organization, 161 pp.

    • Search Google Scholar
    • Export Citation
  • Lübken, F-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in-situ measurements of neutral density fluctuations. J. Geophys. Res., 102 , 1344113456.

    • Search Google Scholar
    • Export Citation
  • Lübken, F-J., 2000: Nearly zero temperature trend in the polar summer mesosphere. Geophys. Res. Lett., 27 , 36033606.

  • McLandress, C., W. E. Ward, V. I. Fomichev, K. Semeniuk, S. R. Beagley, N. A. McFarlane, and T. G. Shepherd, 2006: Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian Middle Atmosphere Model. J. Geophys. Res., 111 , D17111. doi:10.1029/2005JD006776.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10 , 496508.

  • Miyahara, S., Y. Hayashi, and J. D. Mahlman, 1986: Interactions between gravity waves and planetary-scale flow simulated by the GFDL “SKYHI” general circulation model. J. Atmos. Sci., 43 , 18441861.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., and J. Thuburn, 1996: The two-day wave in a middle atmosphere GCM. Geophys. Res. Lett., 23 , 21132116.

  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life-cycle of baroclinic instability. J. Atmos. Sci., 52 , 36953716.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32 , L18802. doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1983: Baroclinic instability of the summer mesosphere: A mechanism for the quasi-two-day wave? J. Atmos. Sci., 40 , 262270.

    • Search Google Scholar
    • Export Citation
  • Sato, K., T. Kumakura, and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56 , 10051018.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Coauthors, 2006: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate, 19 , 39033931.

    • Search Google Scholar
    • Export Citation
  • Semeniuk, K., and T. G. Shepherd, 2001: The middle-atmosphere Hadley circulation and equatorial inertial adjustment. J. Atmos. Sci., 58 , 30773096.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., K. Semeniuk, and J. N. Koshyk, 1996: Sponge layer feedbacks in middle-atmosphere models. J. Geophys. Res., 101 , (D18). 2344723464.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. A. Schmidt, R. L. Miller, and D. Rind, 2001: Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res., 106 , (D7). 71937210.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, and P. J. Kushner, 2008: Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett., 35 , L12706. doi:10.1029/2008GL033573.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • Singer, W., R. Lattek, P. Hoffmann, B. Williams, D. C. Fritts, Y. Murayama, and K. Sakanoi, 2005: Tides near the Arctic summer mesopause during the MaCWAVE/MIDAS summer program. Geophys. Res. Lett., 32 , L07S90. doi:10.1029/2004GL021607.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and S. A. Orszag, Eds., Cambridge University Press, 3–36.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1999: The first realistic simulation of the stratospheric quasi-biennial oscillation in a general circulation model. Geophys. Res. Lett., 26 , 13071310.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., and B. A. Boville, 1992: A three-dimensional simulation of the equatorial quasi-biennial oscillation. J. Atmos. Sci., 49 , 10201035.

    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33 , L12812. doi:10.1029/2006GL026429.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and G. Schmitz, 2001: A troposphere–stratosphere–mesosphere general circulation model with parameterization of gravity waves: Climatology and sensitivity studies. Tellus, 53A , 300316.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135 , 670688.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 114 5
PDF Downloads 164 57 3