Dynamics of Prediction Errors under the Combined Effect of Initial Condition and Model Errors

C. Nicolis Institut Royal Météorologique de Belgique, Brussels, Belgium

Search for other papers by C. Nicolis in
Current site
Google Scholar
PubMed
Close
,
Rui A. P. Perdigao Institut Royal Météorologique de Belgique, Brussels, Belgium

Search for other papers by Rui A. P. Perdigao in
Current site
Google Scholar
PubMed
Close
, and
S. Vannitsem Institut Royal Météorologique de Belgique, Brussels, Belgium

Search for other papers by S. Vannitsem in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The transient evolution of prediction errors in the short to intermediate time regime is considered under the combined effect of initial condition and model errors. Some generic features are brought out and connected with intrinsic properties. Under the assumption of small uncorrelated initial errors and of small parameter errors, the conditions of existence of a time at which the mean quadratic error reaches a minimum and of a crossover time at which the contribution of initial condition errors matches that of model errors are determined. The results are illustrated and tested on representative low-order models of atmospheric dynamics exhibiting bistability, saddle-point behavior, and chaotic behavior.

* Current affiliation: Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal

Corresponding author address: Catherine Nicolis, Institut Royal Météorologique de Belgique, Avenue Circulaire 3, B-1180 Brussels, Belgium. Email: cnicolis@oma.be

Abstract

The transient evolution of prediction errors in the short to intermediate time regime is considered under the combined effect of initial condition and model errors. Some generic features are brought out and connected with intrinsic properties. Under the assumption of small uncorrelated initial errors and of small parameter errors, the conditions of existence of a time at which the mean quadratic error reaches a minimum and of a crossover time at which the contribution of initial condition errors matches that of model errors are determined. The results are illustrated and tested on representative low-order models of atmospheric dynamics exhibiting bistability, saddle-point behavior, and chaotic behavior.

* Current affiliation: Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal

Corresponding author address: Catherine Nicolis, Institut Royal Météorologique de Belgique, Avenue Circulaire 3, B-1180 Brussels, Belgium. Email: cnicolis@oma.be

Save
  • Baker Jr., G. A., and P. Graves-Morris, 1996: Padé Approximants. Cambridge University Press, 746 pp.

  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 12051216.

  • Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus, 39A , 474491.

  • Ivanov, L. M., and P. C. Chu, 2007: On stochastic stability of regional ocean models in wind forcing. Nonlinear Processes Geophys., 14 , 655670.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 364 pp.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., J. Sanjay, A. Mitra, and T. Vijaya Kumar, 2004: Determination of forecast errors arising from different components of model physics and dynamics. Mon. Wea. Rev., 132 , 25702594.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34 , 505513.

  • Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar on Predictability, Reading, Berkshire, United Kingdom, ECMWF, 1–18.

    • Search Google Scholar
    • Export Citation
  • Nicolis, C., 1992: Probabilistic aspects of error growth in atmospheric dynamics. Quart. J. Roy. Meteor. Soc., 118 , 553568.

  • Nicolis, C., 2003: Dynamics of model error: Some generic features. J. Atmos. Sci., 60 , 22082218.

  • Nicolis, C., 2004: Dynamics of model error: The role of unresolved scales revisited. J. Atmos. Sci., 61 , 17401753.

  • Nicolis, C., and G. Nicolis, 1995: Chaos in dissipative systems: Understanding atmospheric physics. Adv. Chem. Phys., 91 , 511570.

  • Nicolis, G., 1995: Introduction to Nonlinear Science. Cambridge University Press, 254 pp.

  • Reynolds, C. A., P. J. Webster, and E. Kalnay, 1994: Random error growth in NMC’s global forecasts. Mon. Wea. Rev., 122 , 12811305.

  • Schubert, S., and Y. Schang, 1996: An objective method for inferring sources of model error. Mon. Wea. Rev., 124 , 325340.

  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128 , 647677.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and variability in CRU, ERA-40, and NCEP/NCAR analyses of monthly-mean surface air temperature. ERA-40 Project Report Series 18, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Tribbia, J. J., and D. P. Baumhefner, 1988: The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies. Mon. Wea. Rev., 116 , 22762288.

    • Search Google Scholar
    • Export Citation
  • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 63 , 703713.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 337 193 9
PDF Downloads 172 74 16