Formation of Jets and Equatorial Superrotation on Jupiter

Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
and
Junjun Liu California Institute of Technology, Pasadena, California

Search for other papers by Junjun Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter’s jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter’s jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together, and if upper-tropospheric dynamics are linked to a magnetohydrodynamic (MHD) drag that acts deep in the atmosphere and affects the zonal flow away from but not near the equator. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, away from the equator up to depths at which the MHD drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter’s outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter’s observed jets and thermal structure and makes testable predictions about as yet unobserved aspects thereof. A control simulation that incorporates only differential radiative heating but not intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but not differential radiative heating produces equatorial superrotation but no off-equatorial jets. The proposed mechanisms for the formation of jets and equatorial superrotation likely act in the atmospheres of all giant planets.

Corresponding author address: Tapio Schneider, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125–2300. Email: tapio@caltech.edu

Abstract

The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter’s jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter’s jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together, and if upper-tropospheric dynamics are linked to a magnetohydrodynamic (MHD) drag that acts deep in the atmosphere and affects the zonal flow away from but not near the equator. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, away from the equator up to depths at which the MHD drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter’s outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter’s observed jets and thermal structure and makes testable predictions about as yet unobserved aspects thereof. A control simulation that incorporates only differential radiative heating but not intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but not differential radiative heating produces equatorial superrotation but no off-equatorial jets. The proposed mechanisms for the formation of jets and equatorial superrotation likely act in the atmospheres of all giant planets.

Corresponding author address: Tapio Schneider, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125–2300. Email: tapio@caltech.edu

Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89 , 609646.

  • Atkinson, D. H., J. B. Pollack, and A. Seiff, 1998: The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res., 103 , 2291122928.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1983: Homogeneous and isotropic turbulence on the sphere. J. Atmos. Sci., 40 , 154163.

  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40 , 164184.

  • Bourke, W., 1974: A multilevel spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev., 102 , 687701.

  • Busse, F. H., 1976: A simple model of convection in the Jovian atmosphere. Icarus, 29 , 255260.

  • Busse, F. H., 1994: Convection-driven zonal flows and vortices in the major planets. Chaos, 4 , 123134.

  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20 , 607609.

  • Conrath, B., P. Gierasch, and E. Ustinov, 1998: Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus, 135 , 501517.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2002: Rhines scale and spectra of the β-plane turbulence with bottom drag. Phys. Rev. E, 65 , 067301. doi:10.1103/PhysRevE.65.067301.

    • Search Google Scholar
    • Export Citation
  • Donivan, F. F., and T. D. Carr, 1969: Jupiter’s decametric rotation period. Astrophys. J., 157 , L65L68.

  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65 , 855874.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Vol. 32, Texts in Applied Mathematics, Springer, 483 pp.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37 , 26002616.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., and Coauthors, 2000: Observation of moist convection in Jupiter’s atmosphere. Nature, 403 , 628630.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Grote, E., and F. H. Busse, 2001: Dynamics of convection and dynamos in rotating spherical fluid shells. Fluid Dyn. Res., 28 , 349368.

    • Search Google Scholar
    • Export Citation
  • Guillot, T., 1999: A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci., 47 , 11831200.

  • Guillot, T., 2005: The interiors of giant planets: Models and outstanding questions. Annu. Rev. Earth Planet. Sci., 33 , 493530.

  • Guillot, T., D. J. Stevenson, W. B. Hubbard, and D. Saumon, 2004: The interior of Jupiter. Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal et al., Eds., Cambridge University Press, 35–57.

    • Search Google Scholar
    • Export Citation
  • Hanel, R. A., B. J. Conrath, L. W. Herath, V. G. Kunde, and J. A. Pirraglia, 1981: Albedo, internal heat, and energy balance of Jupiter—Preliminary results of the Voyager infrared investigation. J. Geophys. Res., 86 , 87058712.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651679.

    • Search Google Scholar
    • Export Citation
  • Heimpel, M., and J. Aurnou, 2007: Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high-latitude jets on Jupiter and Saturn. Icarus, 187 , 540557.

    • Search Google Scholar
    • Export Citation
  • Heimpel, M., J. Aurnou, and J. Wicht, 2005: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature, 438 , 193196.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32 , 14941497.

  • Held, I. M., 1999: Equatorial superrotation in Earth-like atmospheric models. Bernhard Haurwitz Memorial Lecture, 23 pp. [Available online at http://www.gfdl.gov/∼ih/papers/super.ps.].

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Hoskins, 1985: Large-scale eddies and the general circulation of the troposphere. Advances in Geophysics, Vol. 28A, Academic Press, 3–31.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75 , 18251830.

    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26 , 841853.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., 1990: Atmospheric dynamics of the outer planets. Science, 248 , 308315.

  • Ingersoll, A. P., and D. Pollard, 1982: Motion in the interiors and atmospheres of Jupiter and Saturn: Scale analysis, anelastic equations, barotropic stability criterion. Icarus, 52 , 6280.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., and H. Kanamori, 1995: Waves from the collisions of comet Shoemaker–Levy 9 with Jupiter. Nature, 374 , 706708.

  • Ingersoll, A. P., R. F. Beebe, J. L. Mitchell, G. W. Garneau, G. M. Yagi, and J-P. Müller, 1981: Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res., 86 , 87338743.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., and Coauthors, 2004: Dynamics of Jupiter’s atmosphere. Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal et al., Eds., Cambridge University Press, 105–128.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., 2008: Turbulent convection in an anelastic rotating sphere: A model for the circulation on the giant planets. Ph.D. thesis, Massachusetts Institute of Technology, 214 pp.

  • Kaspi, Y., and G. R. Flierl, 2007: Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci., 64 , 31773194.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1951: Vorticity transfer as related to the development of the general circulation. J. Meteor., 8 , 307315.

  • Levine, J., D. Kraemer, and W. Kuhn, 1977: Solar radiation incident on Mars and the outer planets: Latitudinal, seasonal, and atmospheric effects. Icarus, 31 , 136145.

    • Search Google Scholar
    • Export Citation
  • Liu, J. J., P. M. Goldreich, and D. J. Stevenson, 2008: Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus, 196 , 653664.

    • Search Google Scholar
    • Export Citation
  • Lodders, K., and B. Fegley Jr., 1998: The Planetary Scientist’s Companion. Oxford University Press, 391 pp.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Magalhães, J. A., A. Seiff, and R. E. Young, 2002: The stratification of Jupiter’s troposphere at the Galileo probe entry site. Icarus, 158 , 410433.

    • Search Google Scholar
    • Export Citation
  • Marston, J. B., E. Conover, and T. Schneider, 2008: Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci., 65 , 19551966.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2542.

  • McIntyre, M., 1980: An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction. Pure Appl. Geophys., 118 , 152176.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60 , 3765.

  • Nellis, W. J., S. T. Weir, and A. C. Mitchell, 1996: Metallization and electrical conductivity of hydrogen in Jupiter. Science, 273 , 936938.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2007: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy–eddy interactions. Geophys. Res. Lett., 34 , L22801. doi:10.1029/2007GL031779.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: Weather-layer dynamics of baroclinic eddies and multiple jets in an idealized general circulation model. J. Atmos. Sci., 65 , 524535.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 555 pp.

  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. 2nd ed. Sundog Publishing, 470 pp.

  • Plumb, R. A., 1979: Eddy fluxes of conserved quantities by small-amplitude waves. J. Atmos. Sci., 36 , 16991704.

  • Porco, C., and Coauthors, 2003: Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299 , 15411547.

  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48 , 688697.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., P. J. Gierasch, B. J. Conrath, A. Simon-Miller, T. Fouchet, and Y. H. Yamazaki, 2006: Mapping potential-vorticity dynamics on Jupiter. I. Zonal-mean circulation from Cassini and Voyager 1 data. Quart. J. Roy. Meteor. Soc., 132 , 15771603.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69 , 417443.

  • Rhines, P. B., 1994: Jets. Chaos, 4 , 313339.

  • Salyk, C., A. P. Ingersoll, J. Lorre, A. Vasavada, and A. D. Del Genio, 2006: Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185 , 430442.

    • Search Google Scholar
    • Export Citation
  • Sánchez-Lavega, A., and Coauthors, 2008: Depth of a strong Jovian jet from a planetary-scale disturbance driven by storms. Nature, 451 , 437440.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50 , 12111227.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34 , 280296.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34 , 655688.

  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63 , 15691586.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65 , 21532173.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1987a: A spectral view of nonlinear fluxes and stationary–transient interaction in the atmosphere. J. Atmos. Sci., 44 , 11661178.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1987b: Rossby waves and two-dimensional turbulence in a large-scale zonal jet. J. Fluid Mech., 183 , 467509.

  • Showman, A., and A. Ingersoll, 1998: Interpretation of Galileo probe data and implications for Jupiter’s dry downdrafts. Icarus, 132 , 205220.

    • Search Google Scholar
    • Export Citation
  • Simon-Miller, A. A., B. J. Conrath, P. J. Gierasch, G. S. Orton, R. K. Achterberg, F. M. Flasar, and B. M. Fisher, 2006: Jupiter’s atmospheric temperatures: From Voyager IRIS to Cassini CIRS. Icarus, 180 , 98112.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Henning, I. N. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469 , 1348.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Sromovsky, L. A., and P. M. Fry, 2002: Jupiter’s cloud structure as constrained by Galileo probe and HST observations. Icarus, 157 , 373400.

    • Search Google Scholar
    • Export Citation
  • Sromovsky, L. A., A. D. Collard, P. M. Fry, G. S. Orton, M. T. Lemmon, M. G. Tomasko, and R. S. Freedman, 1998: Galileo probe measurements of thermal and solar radiation fluxes in the Jovian atmosphere. J. Geophys. Res., 103 , 2292922977.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and D. G. Duffy, 1992: Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci., 49 , 15411554.

    • Search Google Scholar
    • Export Citation
  • Sun, Z-P., G. Schubert, and G. A. Glatzmaier, 1993: Banded surface flow maintained by convection in a model of the rapidly rotating giant planets. Science, 260 , 661664.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 771 pp.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68 , 19351996.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63 , 33333350.

    • Search Google Scholar
    • Export Citation
  • West, R. A., K. H. Baines, A. J. Friedson, D. Banfield, B. Ragent, and F. W. Taylor, 2004: Jovian clouds and haze. Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal et al., Eds., Cambridge University Press, 79–104.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1979: Planetary circulations: 2. The Jovian quasi-geostrophic regime. J. Atmos. Sci., 36 , 932968.

  • Williams, G. P., 2002: Jovian dynamics. Part II: The genesis and equilibration of vortex sets. J. Atmos. Sci., 59 , 13561370.

  • Williams, G. P., 2003: Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. J. Atmos. Sci., 60 , 12701296.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 748 225 18
PDF Downloads 556 158 12