Storm-Relative Helicity Revealed from Polarimetric Radar Measurements

Matthew R. Kumjian Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
and
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dual-polarization radar variables are especially sensitive to the microphysical processes of melting and size sorting of precipitation particles. In deep convective storms, polarimetric measurements of such processes can provide information about the airflow in and around the storm that may be used to elucidate storm behavior and evolution. Size sorting mechanisms include differential sedimentation, vertical transport, strong rotation, and wind shear. In particular, winds that veer with increasing height typical of supercell environments cause size sorting that is manifested as an enhancement of differential reflectivity (ZDR) along the right or inflow edge of the forward-flank downdraft precipitation echo, which has been called the ZDR arc signature. In some cases, this shear profile can be augmented by the storm inflow. It is argued that the magnitude of this enhancement is related to the low-level storm-relative environmental helicity (SRH) in the storm inflow.

To test this hypothesis, a simple numerical model is constructed that calculates trajectories for raindrops based on their individual sizes, which allows size sorting to occur. The modeling results indicate a strong positive correlation between the maximum ZDR in the arc signature and the low-level SRH, regardless of the initial drop size distribution aloft. Additional observational evidence in support of the conceptual model is presented. Potential changes in the ZDR arc signature as the supercell evolves and the low-level mesocyclone occludes are described.

Corresponding author address: Matthew R. Kumjian, CIMMS/NSSL, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: matthew.kumjian@noaa.gov

Abstract

The dual-polarization radar variables are especially sensitive to the microphysical processes of melting and size sorting of precipitation particles. In deep convective storms, polarimetric measurements of such processes can provide information about the airflow in and around the storm that may be used to elucidate storm behavior and evolution. Size sorting mechanisms include differential sedimentation, vertical transport, strong rotation, and wind shear. In particular, winds that veer with increasing height typical of supercell environments cause size sorting that is manifested as an enhancement of differential reflectivity (ZDR) along the right or inflow edge of the forward-flank downdraft precipitation echo, which has been called the ZDR arc signature. In some cases, this shear profile can be augmented by the storm inflow. It is argued that the magnitude of this enhancement is related to the low-level storm-relative environmental helicity (SRH) in the storm inflow.

To test this hypothesis, a simple numerical model is constructed that calculates trajectories for raindrops based on their individual sizes, which allows size sorting to occur. The modeling results indicate a strong positive correlation between the maximum ZDR in the arc signature and the low-level SRH, regardless of the initial drop size distribution aloft. Additional observational evidence in support of the conceptual model is presented. Potential changes in the ZDR arc signature as the supercell evolves and the low-level mesocyclone occludes are described.

Corresponding author address: Matthew R. Kumjian, CIMMS/NSSL, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: matthew.kumjian@noaa.gov

Save
  • Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3-cm band. J. Appl. Meteor., 16 , 13221331.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33 , 851864.

  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81 , 29392951.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116 , 17901804.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. Pazmany, 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135 , 15221543.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43 , 15411553.

  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123 , 31293143.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, and J. D. Tuttle, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43 , 461475.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 336 pp.

  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. P. Davies-Jones, 1993: Environmental helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 97–104.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: The evolution of tornadic storms. J. Atmos. Sci., 22 , 664668.

  • Browning, K. A., and R. J. Donaldson Jr., 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20 , 533545.

  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. V. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47 , 22382255.

    • Search Google Scholar
    • Export Citation
  • Caylor, I., and A. J. Illingworth, 1987: Radar observations and modeling of warm rain initiation. Quart. J. Roy. Meteor. Soc., 113 , 11711191.

    • Search Google Scholar
    • Export Citation
  • Colquhoun, J. R., and P. A. Riley, 1996: Relationships between tornado intensity and various wind and thermodynamic variables. Wea. Forecasting, 11 , 360371.

    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121 , 25112528.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and R. H. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes. Part I: Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell thunderstorms. J. Atmos. Sci., 41 , 29913006.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1993: Helicity trends in tornado outbreaks. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 56–60.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65 , 24692497.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., D. W. Burgess, and M. Foster, 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125 , 25622582.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133 , 15011524.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., S. M. Lazarus, and R. P. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121 , 20052029.

    • Search Google Scholar
    • Export Citation
  • Esterheld, J. M., and D. J. Giuliano, 2008: Discriminating between tornadic and non-tornadic supercells: A new hodograph technique. Electron. J. Severe Storms Meteor., 3 , 150.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., A. V. Ryzhkov, and J. Krause, 2005: Automatic detection of the melting layer with a polarimetric prototype of the WSR-88D radar. Preprints, 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 11R.2. [Available online at http://ams.confex.com/ams/pdfpapers/95894.pdf.].

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47 , 13541364.

    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., S. M. Cherry, and V. N. Bringi, 1982: Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements. J. Appl. Meteor., 21 , 252256.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6 , 243248.

  • Gunn, R., and J. S. Marshall, 1955: The effect of wind shear on falling precipitation. J. Meteor., 12 , 339349.

  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73 , 13651374.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., 1960: The motion and erosion of convective storms in severe vertical wind shear. J. Atmos. Sci., 17 , 270282.

  • Höller, H., V. N. Bringi, J. Hubbert, M. Hagen, and P. F. Meischner, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51 , 25002522.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric measurements from a severe hailstorm in eastern Colorado. J. Appl. Meteor., 37 , 749755.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113 , 469489.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and D. B. Johnson, 1983: Cloud microphysics and radar. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, Amer. Meteor. Soc., 323–340.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., S. A. Rutledge, W. A. Petersen, and V. N. Bringi, 2001: Polarimetric radar observations of hail formation. J. Appl. Meteor., 40 , 13471366.

    • Search Google Scholar
    • Export Citation
  • Kerr, B. W., and G. L. Darkow, 1996: Storm-relative winds and helicity in the tornadic thunderstorm environment. Wea. Forecasting, 11 , 489505.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: The dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19 , 369402.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35 , 10971110.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40 , 359377.

  • Kumjian, M. R., and A. V. Ryzhkov, 2007: Polarimetric characteristics of tornadic and nontornadic supercell thunderstorms. Preprints, 33rd Conf. on Radar Meteorology, Cairns, Queensland, Australia, Amer. Meteor. Soc., P10.1. [Available online at http://ams.confex.com/ams/pdfpapers/122882.pdf.].

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47 , 19401961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, J. L. Alford, M. Knight, and J. W. Conway, 2008: Close-range observations of a tornadic supercell with C-band polarimetric Doppler radar. Preprints, Symp. on Recent Developments in Atmospheric Applications of Radar and Lidar, New Orleans, LA, Amer., Meteor. Soc., P2.14. [Available online at http://ams.confex.com/ams/pdfpapers/133441.pdf.].

    • Search Google Scholar
    • Export Citation
  • Leftwich, P. W., 1990: On the use of helicity in operational assessment of severe local storm potential. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 269–274.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstrom evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1986: The structure, energetics, and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43 , 126140.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting layer in a supercell storm. J. Appl. Meteor., 41 , 11791194.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104 , 133142.

  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130 , 852876.

  • Markowski, P. M., J. M. Straka, E. N. Rasmussen, and D. O. Blanchard, 1998: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126 , 29592971.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130 , 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60 , 795823.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, D. Heimann, and H. Höller, 1991: A squall line in Southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119 , 678701.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39 , 10261031.

    • Search Google Scholar
    • Export Citation
  • Outinen, K., and J. Teittinen, 2007: Case study of a tornadic supercell in Finland 28 August 2005. Proc. Fourth European Conf. on Severe Storms, Trieste, Italy, International Centre for Theoretical Physics, 05.14.

    • Search Google Scholar
    • Export Citation
  • Outinen, K., and J. Teittinen, 2008: Polarimetric radar observations of a tornadic supercell in Finland. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, Finnish Meteorological Institute, P4.3.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. L. Pitter, 1971: A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci., 28 , 8694.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11461164.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., K. K. Droegemeier, and R. P. Davies-Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear. Mon. Wea. Rev., 135 , 34293455.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136 , 28492870.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110 , 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37 , 12281240.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44 , 557570.

  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimated from differential polarization measurements. J. Atmos. Oceanic Technol., 4 , 588598.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., A. M. Shapiro, K. Brewster, M. Xue, J. Gao, and N. Snook, 2008a: High-resolution assimilation of CASA radar data from a tornadic convective system. Preprints, Symp. on Recent Developments in Atmospheric Applications of Radar and Lidar, New Orleans, LA, Amer. Meteor. Soc., P1.6. [Available online at http://ams.confex.com/ams/pdfpapers/132040.pdf.].

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., C. M. Shafer, and M. R. Kumjian, 2008b: Multi-platform analysis of a tornadic convective system. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, Finnish Meteorological Institute, P4.10.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnić, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40 , 10191034.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15 , 6976.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., 2008: Attenuation correction techniques and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar data of severe convective storms. M.S. thesis, School of Meteorology, University of Oklahoma, 148 pp.

  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15 , 682699.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 12431261.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22 , 102115.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46 , 601620.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., J. M. Straka, and E. N. Rasmussen, 2008: Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic Southern Plains supercells. J. Appl. Meteor. Climatol., 47 , 12321247.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116 , 15211539.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57 , 14521472.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52 , 26752703.

    • Search Google Scholar
    • Export Citation
  • Yu, T-Y., R. R. Rondinel, and R. D. Palmer, 2009: Investigation of non-Gaussian weather spectra observed by weather radar in a tornadic supercell. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80 , 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 704 210 10
PDF Downloads 591 176 10