The Vertical Structure of Mesoscale Convective Vortices

Christopher A. Davis Mesoscale and Microscale Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
and
Thomas J. Galarneau Jr. Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Thomas J. Galarneau Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of two cases of developing mesoscale convective vortices (MCVs) are examined to determine the dynamics governing the origin and vertical structure of these features. Although one case evolves in strong vertical wind shear and the other evolves in modest shear, the evolutions are remarkably similar. In addition to the well-known mesoscale convergence that spins up vorticity in the midtroposphere, the generation of vorticity in the lower troposphere occurs along the convergent outflow boundary of the parent mesoscale convective system (MCS). Lateral transport of this vorticity from the convective region back beneath the midtropospheric vorticity center is important for obtaining a deep column of cyclonic vorticity. However, this behavior would be only transient without a secondary phase of vorticity growth in the lower troposphere that results from a radical change in the divergence profile favoring lower-tropospheric convergence. Following the decay of the nocturnal MCS, subsequent convection occurs in a condition of greater relative humidity through the lower troposphere and small conditional instability. Vorticity and potential vorticity are efficiently produced near the top of the boundary layer and a cyclonic circulation appears at the surface.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Christopher A. Davis, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: cdavis@ucar.edu

Abstract

Simulations of two cases of developing mesoscale convective vortices (MCVs) are examined to determine the dynamics governing the origin and vertical structure of these features. Although one case evolves in strong vertical wind shear and the other evolves in modest shear, the evolutions are remarkably similar. In addition to the well-known mesoscale convergence that spins up vorticity in the midtroposphere, the generation of vorticity in the lower troposphere occurs along the convergent outflow boundary of the parent mesoscale convective system (MCS). Lateral transport of this vorticity from the convective region back beneath the midtropospheric vorticity center is important for obtaining a deep column of cyclonic vorticity. However, this behavior would be only transient without a secondary phase of vorticity growth in the lower troposphere that results from a radical change in the divergence profile favoring lower-tropospheric convergence. Following the decay of the nocturnal MCS, subsequent convection occurs in a condition of greater relative humidity through the lower troposphere and small conditional instability. Vorticity and potential vorticity are efficiently produced near the top of the boundary layer and a cyclonic circulation appears at the surface.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Christopher A. Davis, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: cdavis@ucar.edu

Save
  • Bartels, D. L., and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119 , 104118.

    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., J. M. Brown, and E. I. Tollerud, 1997: Structure of a midtropospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev., 125 , 193211.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133 , 752766.

  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Bosart, L. F., and F. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38 , 16161642.

  • Brandes, E. A., 1990: Evolution and structure of the 6–7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118 , 109127.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., R. W. Moore, M. T. Montgomery, and C. A. Davis, 2007: Mesoscale convective vortex formation in a weakly sheared moist neutral environment. J. Atmos. Sci., 64 , 14431466.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., M. T. Montgomery, and R. F. A. Hertenstein, 2002: Early evolution of vertical vorticity in a numerically simulated idealized convective line. J. Atmos. Sci., 59 , 21132127.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51 , 20052030.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and S. B. Trier, 2002: Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system. Mon. Wea. Rev., 130 , 28392858.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135 , 20292049.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85 , 10751093.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using weather research and forecast (WRF) model. Atmos. Sci. Lett., 5 , 110117. doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51 , 17801807.

  • Galarneau Jr., T. J., L. F. Bosart, C. A. Davis, and R. McTaggart-Cowan, 2009: Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev., 137 , 562584.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP mesomodel. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and D. J. Raymond, 1995: Simulation of a mature mesoscale convective system using a nonlinear balance model. J. Atmos. Sci., 52 , 161175.

    • Search Google Scholar
    • Export Citation
  • Kirk, J. R., 2003: Comparing the dynamical development of two mesoscale convective vortices. Mon. Wea. Rev., 131 , 862890.

  • Kirk, J. R., 2007: A phase-plot method for diagnosing vorticity concentration mechanisms in mesoscale convective vortices. Mon. Wea. Rev., 135 , 801820.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53 , 29242951.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34 , L06811. doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., C. López-Carrillo, and L. L. Cavazos, 1998: Case studies of developing East Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124 , 20052034.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129 , 605637.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51 , 25632584.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., N. E. Davidson, and M. T. Montgomery, 2007: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part III: Diagnosis of developing and nondeveloping storms. J. Atmos. Sci., 64 , 31953213.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130 , 877899.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and C. A. Davis, 2007: Mesoscale convective vortices observed during BAMEX. Part II: Influences on secondary deep convection. Mon. Wea. Rev., 135 , 20512075.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63 , 24372461.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, A. Nester, D. P. Jorgensen, and N. T. Atkins, 2006a: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134 , 27932812.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, C. A. Davis, and N. T. Atkins, 2006b: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134 , 28132829.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50 , 645670.

  • Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55 , 26032622.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., 1992: The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120 , 27632785.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 958 349 35
PDF Downloads 695 174 14