Testing Lagrangian Theories of Internal Wave Spectra. Part II: Varying the Number of Waves

G. P. Klaassen Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada

Search for other papers by G. P. Klaassen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It has been proposed by Allen and Joseph, Hines, and Chunchuzov that the kinematic advection produced by superpositions of sinusoidal Lagrangian gravity waves confined to lower vertical wavenumbers m provides an explanation for the quasi-universal m−3 Eulerian spectral tails commonly found at higher m in the oceans and the atmosphere. In support of these theories, Hines has proposed a prototype wave spectrum claimed to meet criteria for Lagrangian linearity and the production of m−3 Eulerian spectra. Although the shape of the Lagrangian spectrum is claimed not to play a major role in this process, Hines has argued that moderately large numbers of waves are required to ensure quasilinear behavior in the Lagrangian frame. The present results demonstrate that, for amplitudes consistent with measurements of saturated waves in the middle atmosphere and for wavenumbers consistent with Hines’ prototype, adiabatic excesses do not diminish with increasing numbers of waves; in contrast, consistency with adiabatic constraints is only achieved in the limit of a single wave, for which the advective nonlinearity u · vanishes. Moreover, fields with strong singularities yield Eulerian tail slopes as large as −1.6, whereas those with lesser violations of adiabatic constraints yield Eulerian spectral tail slopes that are much steeper (more strongly negative) than −3. The implications for theories based on superpositions of Lagrangian sinusoidal waves, for the Hines quasilinear criteria, and for the Hines Doppler-spread theory and parameterization are addressed. The results are also relevant for experimentalists interested in spectral analysis of internal wave fields.

Corresponding author address: Dr. Gary P. Klaassen, Dept. of Earth and Space Science and Engineering, York University, Toronto, ON M3J 1P3, Canada. Email: gklaass@yorku.ca

Abstract

It has been proposed by Allen and Joseph, Hines, and Chunchuzov that the kinematic advection produced by superpositions of sinusoidal Lagrangian gravity waves confined to lower vertical wavenumbers m provides an explanation for the quasi-universal m−3 Eulerian spectral tails commonly found at higher m in the oceans and the atmosphere. In support of these theories, Hines has proposed a prototype wave spectrum claimed to meet criteria for Lagrangian linearity and the production of m−3 Eulerian spectra. Although the shape of the Lagrangian spectrum is claimed not to play a major role in this process, Hines has argued that moderately large numbers of waves are required to ensure quasilinear behavior in the Lagrangian frame. The present results demonstrate that, for amplitudes consistent with measurements of saturated waves in the middle atmosphere and for wavenumbers consistent with Hines’ prototype, adiabatic excesses do not diminish with increasing numbers of waves; in contrast, consistency with adiabatic constraints is only achieved in the limit of a single wave, for which the advective nonlinearity u · vanishes. Moreover, fields with strong singularities yield Eulerian tail slopes as large as −1.6, whereas those with lesser violations of adiabatic constraints yield Eulerian spectral tail slopes that are much steeper (more strongly negative) than −3. The implications for theories based on superpositions of Lagrangian sinusoidal waves, for the Hines quasilinear criteria, and for the Hines Doppler-spread theory and parameterization are addressed. The results are also relevant for experimentalists interested in spectral analysis of internal wave fields.

Corresponding author address: Dr. Gary P. Klaassen, Dept. of Earth and Space Science and Engineering, York University, Toronto, ON M3J 1P3, Canada. Email: gklaass@yorku.ca

Save
  • Allen, K. R., and R. I. Joseph, 1989: A canonical statistical theory of oceanic internal waves. J. Fluid Mech., 204 , 185228.

  • Broutman, D., C. Macaskill, M. E. McIntyre, and J. W. Rottman, 1997: On Doppler-spreading models of internal waves. Geophys. Res. Lett., 24 , 28132816.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., R. H. Grimshaw, and S. D. Eckermann, 2004: Internal waves in a Lagrangian reference frame. J. Atmos. Sci., 61 , 13081313.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., R. H. Grimshaw, and S. D. Eckermann, 2005: Reply. J. Atmos. Sci., 62 , 254256.

  • Candille, G., C. Côté, P. L. Houtekamer, and G. Pellerin, 2007: Verification of an ensemble prediction system against observations. Mon. Wea. Rev., 135 , 26882699.

    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I., 1996: The spectrum of high-frequency internal waves in the atmospheric waveguide. J. Atmos. Sci., 53 , 17981814.

  • Chunchuzov, I., 2002: On the high-wavenumber form of the Eulerian internal wave spectrum in the atmosphere. J. Atmos. Sci., 59 , 17531774.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91 , 27422748.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 1997: Influence of wave propagation on the Doppler spreading of atmospheric gravity waves. J. Atmos. Sci., 54 , 25542573.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 1999: Isentropic advection by gravity waves: Quasi-universal M−3 vertical wavenumber spectra near the onset of instability. Geophys. Res. Lett., 26 , 201204.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd, 2002: Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations. J. Geophys. Res., 107 , 4087. doi:10.1029/2001JD000479.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K. P., 1996: Comprehensive meteorological modelling of the middle atmosphere: A tutorial review. J. Atmos. Solar Terr. Phys., 58 , 15911627.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1960: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38 , 14411481.

  • Hines, C. O., 1991a: The saturation of gravity waves in the middle atmosphere. Part I: Critique of linear-instability theory. J. Atmos. Sci., 48 , 13481359.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1991b: The saturation of gravity waves in the middle atmosphere. Part II: Development of Doppler-spread theory. J. Atmos. Sci., 48 , 13601379.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1996: Nonlinearity of gravity wave saturated spectra in the middle atmosphere. Geophys. Res. Lett., 23 , 33093312.

  • Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Solar Terr. Phys., 59 , 371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1999: Comments on “Influence of wave propagation on the Doppler spreading of atmospheric gravity waves.”. J. Atmos. Sci., 56 , 10941098.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2001: Theory of the Eulerian tail in the spectra of atmospheric and oceanic internal gravity waves. J. Fluid Mech., 448 , 289313.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2002a: Nonlinearities and linearities in internal gravity waves of the atmosphere and oceans. Geophys. Astrophys. Fluid Dyn., 96 , 130.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2002b: Comments on the gravity-wave theory of J. Weinstock concerning dissipation induced by nonlinear effects. J. Atmos. Sci., 59 , 20242030.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2004: The Doppler spread theory and parameterization revisited. J. Atmos. Solar Terr. Phys., 66 , 949956.

  • Hines, C. O., 2005: Comments on “Internal waves in a Lagrangian reference frame.”. J. Atmos. Sci., 62 , 251253.

  • Hines, C. O., L. I. Childress, J. B. Kinney, and M. P. Sulzer, 2004: Modeling of gravity-wave tail spectra in the middle atmosphere via numerical and Doppler-spread methods. J. Atmos. Sol. Terr. Phys., 66 , 933948.

    • Search Google Scholar
    • Export Citation
  • Jöckel, P., and Coauthors, 2006: The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys., 6 , 50675104.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., S. D. Eckermann, and H-Y. Chun, 2003: An overview of the past, present, and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., 2009: Testing Lagrangian theories of internal wave spectra. Part I: Varying the amplitude and wavenumbers. J. Atmos. Sci., 66 , 10771100.

    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and L. J. Sonmor, 2006: Does kinematic advection by superimposed waves provide an explanation for quasi-universal gravity-wave spectra? Geophys. Res. Lett., 33 , L23802. doi:10.1029/2006GL027388.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102 , 2575125762.

    • Search Google Scholar
    • Export Citation
  • Mayr, H. G., J. G. Mengel, K. L. Chan, and H. S. Porter, 2001: Mesosphere dynamics with gravity wave forcing: Part I. Diurnal and semi-diurnal tides. J. Atmos. Sol. Terr. Phys., 63 , 18511864.

    • Search Google Scholar
    • Export Citation
  • Mayr, H. G., J. G. Mengel, C. L. Wolff, F. T. Huang, and H. S. Porter, 2007: The QBO as potential amplifier and conduit to lower altitudes of solar cycle influence. Ann. Geophys., 25 , 10711092.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., W. E. Ward, V. I. Fomichev, K. Semeniuk, S. R. Beagley, N. A. McFarlane, and T. G. Shepherd, 2006: Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian Middle Atmosphere Model. J. Geophys. Res., 111 , D17111. doi:10.1029/2005JD006776.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J. Geophys. Res., 100 , 2584125853.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Coauthors, 2006: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate, 19 , 39033931.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., 1999: Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. Part II: Energy dissipation and eddy diffusion. J. Atmos. Sci., 56 , 13301343.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., and A. T. Russell, 1999: How many waves are in the gravity wave spectrum? Geophys. Res. Lett., 26 , 36173620.

  • Smith, S. A., D. C. Fritts, and T. E. VanZandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44 , 14041410.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9 , 575578.

  • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58 , 18371857.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1976: Nonlinear theory of acoustic-gravity waves: 1. Saturation and enhanced diffusion. J. Geophys. Res., 81 , 633652.

  • Weinstock, J., 1990: Saturated and unsaturated spectra of gravity waves and scale-dependent diffusion. J. Atmos. Sci., 47 , 22112225.

  • Weinstock, J., G. P. Klaassen, and A. S. Medvedev, 2007: Reply. J. Atmos. Sci., 64 , 10271041.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 159 109
PDF Downloads 46 8 0