Gravity Wave Instability Dynamics at High Reynolds Numbers. Part I: Wave Field Evolution at Large Amplitudes and High Frequencies

David C. Fritts NorthWest Research Associates, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by David C. Fritts in
Current site
Google Scholar
PubMed
Close
,
Ling Wang NorthWest Research Associates, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by Ling Wang in
Current site
Google Scholar
PubMed
Close
,
Joe Werne NorthWest Research Associates, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by Joe Werne in
Current site
Google Scholar
PubMed
Close
,
Tom Lund NorthWest Research Associates, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by Tom Lund in
Current site
Google Scholar
PubMed
Close
, and
Kam Wan NorthWest Research Associates, Colorado Research Associates Division, Boulder, Colorado

Search for other papers by Kam Wan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Direct numerical simulations are employed to examine gravity wave instability dynamics at a high intrinsic frequency, wave amplitudes both above and below nominal convective instability, and a Reynolds number sufficiently high to allow a fully developed turbulence spectrum. Assumptions include no mean shear, uniform stratification, and a monochromatic gravity wave to isolate fluxes due to gravity wave and turbulence structures from those arising from environmental shears or varying wave amplitudes. The results reveal strong wave breaking for both wave amplitudes, severe primary wave amplitude reductions within ∼1 or 2 wave periods, an extended turbulence inertial range, significant excitation of additional wave motions exhibiting upward and downward propagation, and a net positive vertical potential temperature flux due to the primary wave motion, with secondary waves and turbulence contributing variable and negative potential temperature fluxes, respectively. Turbulence maximizes within ∼1 buoyancy period of the onset of breaking, arises almost entirely owing to shear production, and decays rapidly following primary wave amplitude decay. Secondary waves are excited by wave–wave interactions and the turbulence dynamics accompanying wave breaking; they typically have lower frequencies and smaller momentum fluxes than the primary wave following breaking.

Corresponding author address: David C. Fritts, NorthWest Research Associates, Colorado Research Associates Division, 3380 Mitchell Lane, Boulder, CO 80301. Email: dave@cora.nwra.com

Abstract

Direct numerical simulations are employed to examine gravity wave instability dynamics at a high intrinsic frequency, wave amplitudes both above and below nominal convective instability, and a Reynolds number sufficiently high to allow a fully developed turbulence spectrum. Assumptions include no mean shear, uniform stratification, and a monochromatic gravity wave to isolate fluxes due to gravity wave and turbulence structures from those arising from environmental shears or varying wave amplitudes. The results reveal strong wave breaking for both wave amplitudes, severe primary wave amplitude reductions within ∼1 or 2 wave periods, an extended turbulence inertial range, significant excitation of additional wave motions exhibiting upward and downward propagation, and a net positive vertical potential temperature flux due to the primary wave motion, with secondary waves and turbulence contributing variable and negative potential temperature fluxes, respectively. Turbulence maximizes within ∼1 buoyancy period of the onset of breaking, arises almost entirely owing to shear production, and decays rapidly following primary wave amplitude decay. Secondary waves are excited by wave–wave interactions and the turbulence dynamics accompanying wave breaking; they typically have lower frequencies and smaller momentum fluxes than the primary wave following breaking.

Corresponding author address: David C. Fritts, NorthWest Research Associates, Colorado Research Associates Division, 3380 Mitchell Lane, Boulder, CO 80301. Email: dave@cora.nwra.com

Save
  • Achatz, U., 2005: On the role of optimal perturbations in the instability of monochromatic gravity waves. Phys. Fluids, 17 , 094107. doi:10.1063/1.2046709.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., 2006: Gravity-wave breakdown in a rotating Boussinesq fluid: Linear and nonlinear dynamics. Ph.D. dissertation, University of Rostock, 190 pp.

  • Achatz, U., 2007: The primary nonlinear dynamics of modal and nonmodal perturbations of monochromatic inertia–gravity waves. J. Atmos. Sci., 64 , 7495.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and G. Schmitz, 2006a: Shear and static instability of inertia–gravity wave packets: Short-term modal and nonmodal growth. J. Atmos. Sci., 63 , 397413.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and G. Schmitz, 2006b: Optimal growth in inertia–gravity wave packets: Energetics, long-term development, and three-dimensional structure. J. Atmos. Sci., 63 , 414434.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø, C. E. Wasberg, D. C. Fritts, and J. R. Isler, 1994: Gravity wave breaking in two and three dimensions. 1. Model description and comparison of two-dimensional evolutions. J. Geophys. Res., 99 , 80958108.

    • Search Google Scholar
    • Export Citation
  • Andreassen, Ø, Hvidsten, D. C. Fritts, and S. Arendt, 1998: Vorticity dynamics in a breaking gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367 , 2746.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1987: Effect of nonlinear instability on gravity wave momentum transport. J. Atmos. Sci., 44 , 31883209.

  • Dunkerton, T. J., 1989: Theory of internal gravity wave saturation. Pure Appl. Geophys., 130 , 373397.

  • Farrell, B. F., and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53 , 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci., 53 , 20412053.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1984: Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys. Space Phys., 22 , 275308.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. R. Isler, G. E. Thomas, and Ø Andreassen, 1993: Wave breaking signatures in noctilucent clouds. Geophys. Res. Lett., 20 , 20392042.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. R. Isler, and Ø Andreassen, 1994: Gravity wave breaking in two and three dimensions. 2. Three-dimensional evolution and instability structure. J. Geophys. Res., 99 , 81098123.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., J. F. Garten, and Ø Andreassen, 1996: Wave breaking and transition to turbulence in stratified shear flows. J. Atmos. Sci., 53 , 10571085.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. Arendt, and Ø Andreassen, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech., 367 , 4765.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. L. Vadas, and Y. Yamada, 2002: An estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor radar observations. Geophys. Res. Lett., 29 , 1429. doi:10.1029/2001GL013753.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer, 2003: Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. J. Geophys. Res., 108 , 8452. doi:10.1029/2002JD002406.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., S. L. Vadas, K. Wan, and J. A. Werne, 2006: Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol.-Terr. Phys., 68 , 247265.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009: Gravity wave instability dynamics at high Reynolds numbers. Part II: Turbulence evolution, structure, and anisotropy. J. Atmos. Sci., 66 , 11491171.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , 38503868.

    • Search Google Scholar
    • Export Citation
  • Hecht, J. H., 2004: Instability layers and airglow imaging. Rev. Geophys., 42 , RG1001. doi:10.1029/2003RG000131.

  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39 , 791799.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40 , 24972507.

    • Search Google Scholar
    • Export Citation
  • Julien, K., S. Legg, J. McWilliams, and J. Werne, 1996: Rapidly rotating turbulent Rayleigh-Bénard convection. J. Fluid Mech., 322 , 243.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., S. D. Eckermann, and H-Y. Chun, 2003: A overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., 1991: Two- and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn., 64 , 125.

    • Search Google Scholar
    • Export Citation
  • Lombard, P. N., and J. J. Riley, 1996: Instability and breakdown of internal gravity waves. I. Linear stability analysis. Phys. Fluids, 8 , 32713287.

    • Search Google Scholar
    • Export Citation
  • Manson, A. H., and Coauthors, 2002: Seasonal variations of the semi-diurnal and diurnal tides in the MLT: Multi-year MF radar observations from 2°–70°N, modelled tides (GSWM, CMAM). Ann. Geophys., 20 , 661677.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 2001: Realistic semiannual oscillation simulated in a middle atmosphere general circulation model. Geophys. Res. Lett., 28 , 733736.

    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24 , 492536.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59 , 14731489.

    • Search Google Scholar
    • Export Citation
  • Sonmor, L. J., and G. P. Klaassen, 1997: Toward a unified theory of gravity wave stability. J. Atmos. Sci., 54 , 26552680.

  • Spalart, P. R., R. D. Moser, and M. M. Rogers, 1991: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys., 96 , 297324.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1994: Observations of parametric instability and breaking waves in an oscillating tilted tube. J. Fluid Mech., 261 , 3345.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and D. C. Fritts, 2001: Gravity wave radiation and mean responses to local body forces in the atmosphere. J. Atmos. Sci., 58 , 22492279.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and D. C. Fritts, 2002: The importance of spatial variability in the generation of secondary gravity waves from local body forces. Geophys. Res. Lett., 29 , 1984. doi:10.1029/2002GL015574.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 1995: The instability of internal gravity waves to localized disturbances. Ann. Geophys., 13 , 196210.

  • Werne, J., and D. C. Fritts, 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26 , 439442.

  • Werne, J., and D. C. Fritts, 2001: Anisotropy in a stratified shear layer. Phys. Chem. Earth, 26B , 263268.

  • Werne, J., T. Lund, B. A. Pettersson-Reif, P. Sullivan, and D. C. Fritts, 2005: CAP phase II simulations for the Air Force HEL-JTO project: Atmospheric turbulence simulations on NAVO’s 3000-processor IBM P4+ and ARL’s 2000-processor Intel Xeon EM64T cluster. Proc. 15th DoD HPC User Group Conf., Nashville, TN, DoD High Performance Computing Modernization Program, 100–111.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1994: 3D wave breaking near a critical level. J. Fluid Mech., 272 , 255284.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 102 8
PDF Downloads 218 50 4