Abstract
This paper examines the character, intermittency, and anisotropy of turbulence accompanying wave instability, breaking, and turbulence evolution and decay for gravity waves (GW) having a high intrinsic frequency, amplitudes above and below nominal convective instability, and a high Reynolds number. Wave breaking at both amplitudes leads to an extended inertial range of turbulence, with turbulence energies that maximize within ∼1 wave period of the onset of breaking. Turbulence sources include both shear and buoyancy, with shear being the major contributor. Turbulence displays considerable intermittency both within and across the phase of the breaking gravity wave and exhibits clear anisotropy throughout the evolution. Turbulence anisotropy is found at all spatial scales and all times but is most pronounced in the most statically stable phase of the GW and at late times as the turbulent flow restratifies.
Corresponding author address: David C. Fritts, NorthWest Research Associates, Colorado Research Associates Division, 3380 Mitchell Lane, Boulder, CO 80301. Email: dave@cora.nwra.com