How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity?

Yuqing Wang International Pacific Research Center, and Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A long-standing issue on how outer spiral rainbands affect the structure and intensity of tropical cyclones is studied through a series of numerical experiments using the cloud-resolving tropical cyclone model TCM4. Because diabatic heating due to phase changes is the main driving force of outer spiral rainbands, their effect on the tropical cyclone structure and intensity is evaluated by artificially modifying the heating and cooling rate due to cloud microphysical processes in the model. The view proposed here is that the effect of diabatic heating in outer spiral rainbands on the storm structure and intensity results mainly from hydrostatic adjustment; that is, heating (cooling) of an atmospheric column decreases (increases) the surface pressure underneath the column. The change in surface pressure due to heating in the outer spiral rainbands is significant on the inward side of the rainbands where the inertial stability is generally high. Outside the rainbands in the far field, where the inertial stability is low and internal atmospheric heating is mostly lost to gravity wave radiation and little is left to warm the atmospheric column and lower the local surface pressure, the change in surface pressure is relatively small. This strong radially dependent response reduces the horizontal pressure gradient across the radius of maximum wind and thus the storm intensity in terms of the maximum low-level tangential wind while increasing the inner-core size of the storm.

The numerical results show that cooling in the outer spiral rainbands maintains both the intensity of a tropical cyclone and the compactness of its inner core, whereas heating in the outer spiral rainbands decreases the intensity but increases the size of a tropical cyclone. Overall, the presence of strong outer spiral rainbands limits the intensity of a tropical cyclone. Because heating or cooling in the outer spiral rainbands depends strongly on the relative humidity in the near-core environment, the results have implications for the formation of the annular hurricane structure, the development of concentric eyewalls, and the size change in tropical cyclones.

Corresponding author address: Dr. Yuqing Wang, SOEST/IPRC, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: yuqing@hawaii.edu

Abstract

A long-standing issue on how outer spiral rainbands affect the structure and intensity of tropical cyclones is studied through a series of numerical experiments using the cloud-resolving tropical cyclone model TCM4. Because diabatic heating due to phase changes is the main driving force of outer spiral rainbands, their effect on the tropical cyclone structure and intensity is evaluated by artificially modifying the heating and cooling rate due to cloud microphysical processes in the model. The view proposed here is that the effect of diabatic heating in outer spiral rainbands on the storm structure and intensity results mainly from hydrostatic adjustment; that is, heating (cooling) of an atmospheric column decreases (increases) the surface pressure underneath the column. The change in surface pressure due to heating in the outer spiral rainbands is significant on the inward side of the rainbands where the inertial stability is generally high. Outside the rainbands in the far field, where the inertial stability is low and internal atmospheric heating is mostly lost to gravity wave radiation and little is left to warm the atmospheric column and lower the local surface pressure, the change in surface pressure is relatively small. This strong radially dependent response reduces the horizontal pressure gradient across the radius of maximum wind and thus the storm intensity in terms of the maximum low-level tangential wind while increasing the inner-core size of the storm.

The numerical results show that cooling in the outer spiral rainbands maintains both the intensity of a tropical cyclone and the compactness of its inner core, whereas heating in the outer spiral rainbands decreases the intensity but increases the size of a tropical cyclone. Overall, the presence of strong outer spiral rainbands limits the intensity of a tropical cyclone. Because heating or cooling in the outer spiral rainbands depends strongly on the relative humidity in the near-core environment, the results have implications for the formation of the annular hurricane structure, the development of concentric eyewalls, and the size change in tropical cyclones.

Corresponding author address: Dr. Yuqing Wang, SOEST/IPRC, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: yuqing@hawaii.edu

Save
  • Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208 pp.

  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 2125–2137.

    • Search Google Scholar
    • Export Citation
  • Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58 , 3463–3476.

  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125 , 2662–2682.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 2128–2145.

    • Search Google Scholar
    • Export Citation
  • Chow, K. C., K. L. Chan, and A. K. H. Lau, 2002: Generation of moving spiral bands in tropical cyclones. J. Atmos. Sci., 59 , 2930–2950.

    • Search Google Scholar
    • Export Citation
  • Diercks, J. W., and R. A. Anthes, 1976: Diagnostic studies of spiral rainbands in a nonlinear hurricane model. J. Atmos. Sci., 33 , 959–975.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353–365.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111 , 2341–2361.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571–591.

    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., G. J. Holland, and P. T. May, 2005: Sensitivity of tropical cyclone rainbands to ice-phase microphysics. Mon. Wea. Rev., 133 , 2473–2493.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103 , 685–690.

  • Hack, J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43 , 1559–1573.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., P1.7. [Available online at http://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm].

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricane Katrina and Rita (2005). J. Geophys. Res., 113 , D15108. doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 2519–2541.

  • Jones, T. A., D. J. Cecil, and J. P. Dunion, 2007: The environmental and inner-core conditions governing intensity of Hurricane Erin (2001). Wea. Forecasting, 22 , 708–725.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and F. C. Dougherty, 2006: The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Mon. Wea. Rev., 134 , 1987–2008.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., J. P. Kossin, and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18 , 204–223.

  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid falls in hurricane-like vortices. J. Atmos. Sci., 58 , 2196–2209.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., R. T. Williams, and J-H. Chen, 1999: A possible mechanism for the eye rotation of typhoon Herb. J. Atmos. Sci., 56 , 1659–1673.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., L-Y. Lin, C-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61 , 2722–2734.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33 , 940–958.

  • Langland, R. H., and C-S. Liou, 1996: Implementation of an E–ε parameterization of vertical subgrid-scale mixing in a regional model. Mon. Wea. Rev., 124 , 905–918.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56 , 1224–1228.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. N. Zhang, G. Heymsfield, J. B. Halverson, R. Hood, J. Dudhia, and F. Marks Jr., 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63 , 127–150.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435–465.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59 , 2989–3020.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60 , 2717–2745.

    • Search Google Scholar
    • Export Citation
  • Nong, S-Y., and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129 , 3323–3338.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2005: Is environmental CAPE important in the determination of maximum possible hurricane intensity? J. Atmos. Sci., 62 , 542–550.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118 , 891–917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918–938.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric model. J. Atmos. Sci., 44 , 542–561.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, and B. D. McNoldy, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63 , 325–340.

    • Search Google Scholar
    • Export Citation
  • Sawada, M., and T. Iwasaki, 2007: Impacts of ice phase processes on tropical cyclone development. J. Meteor. Soc. Japan, 85 , 479–494.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical layer stirring versus inertia–buoyancy wave emission. Phys. Fluids, 16 , 1334–1348.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63 , 435–456.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64 , 314–337.

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 1197–1223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378–394.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 1996: On the forward-in-time upstream advection scheme for non-uniform and time-dependent flow. Meteor. Atmos. Phys., 61 , 27–38.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129 , 1370–1394.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 1213–1238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 1239–1262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002c: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130 , 3022–3036.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97 , 93–116.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008a: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 1158–1181.

  • Wang, Y., 2008b: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65 , 1505–1527.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes–A review. Meteor. Atmos. Phys., 87 , 257–278.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 2088–2097.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1978: A possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci., 35 , 838–848.

  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395–411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., H-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41 , 1169–1186.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and X. Wang, 2003: Dependence of hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci., 20 , 711–725.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D-L. Zhang, 2006: A numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63 , 109–126.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1827 720 72
PDF Downloads 1268 392 41