Consistent Scale Interaction of Gravity Waves in the Doppler Spread Parameterization

Erich Becker Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany

Search for other papers by Erich Becker in
Current site
Google Scholar
PubMed
Close
and
Charles McLandress University of Toronto, Toronto, Ontario, Canada

Search for other papers by Charles McLandress in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The standard Doppler spread parameterization of gravity waves, which was proposed by C.-O. Hines and has been applied in a number of middle atmosphere general circulation models, is extended by the inclusion of all effects associated with vertical diffusion. Here the Wentzel–Kramers–Brillouin (WKB) approximation is employed to calculate the vertical propagation of the wave spectrum in the presence of wave damping. According to the scale interaction between quasi-stationary turbulence and the larger nonturbulent flow, all vertical diffusion applied to the resolved flow should damp the parameterized gravity waves as well. Hence, the unobliterated part of the gravity wave spectrum is subject to diffusive damping by the following processes: 1) the background diffusion derived from the model’s boundary layer vertical diffusion scheme, which may extend into the middle atmosphere, 2) molecular diffusion, and 3) the turbulent diffusion resulting from the truncation of the gravity wave spectrum by Doppler spreading, which thus feeds back on the unobliterated gravity waves. The extended Doppler spread parameterization is examined using perpetual July simulations performed with a mechanistic general circulation model. For reasonable parameter settings, the convergence of the potential temperature flux cannot be neglected in the sensible heat budget, especially in the thermosphere. Less gravity wave flux enters the model thermosphere when vertical diffusion is included, thus avoiding the need for artificial means to control the parameterized gravity waves in the upper atmosphere. The zonal wind in the tropical middle and upper atmosphere is found to be especially sensitive to gravity wave damping by diffusion.

Corresponding author address: Erich Becker, Leibniz Institute of Atmospheric Physics, Schlossstr. 6, 18225 Kühlungsborn, Germany. Email: becker@iap-kborn.de

Abstract

The standard Doppler spread parameterization of gravity waves, which was proposed by C.-O. Hines and has been applied in a number of middle atmosphere general circulation models, is extended by the inclusion of all effects associated with vertical diffusion. Here the Wentzel–Kramers–Brillouin (WKB) approximation is employed to calculate the vertical propagation of the wave spectrum in the presence of wave damping. According to the scale interaction between quasi-stationary turbulence and the larger nonturbulent flow, all vertical diffusion applied to the resolved flow should damp the parameterized gravity waves as well. Hence, the unobliterated part of the gravity wave spectrum is subject to diffusive damping by the following processes: 1) the background diffusion derived from the model’s boundary layer vertical diffusion scheme, which may extend into the middle atmosphere, 2) molecular diffusion, and 3) the turbulent diffusion resulting from the truncation of the gravity wave spectrum by Doppler spreading, which thus feeds back on the unobliterated gravity waves. The extended Doppler spread parameterization is examined using perpetual July simulations performed with a mechanistic general circulation model. For reasonable parameter settings, the convergence of the potential temperature flux cannot be neglected in the sensible heat budget, especially in the thermosphere. Less gravity wave flux enters the model thermosphere when vertical diffusion is included, thus avoiding the need for artificial means to control the parameterized gravity waves in the upper atmosphere. The zonal wind in the tropical middle and upper atmosphere is found to be especially sensitive to gravity wave damping by diffusion.

Corresponding author address: Erich Becker, Leibniz Institute of Atmospheric Physics, Schlossstr. 6, 18225 Kühlungsborn, Germany. Email: becker@iap-kborn.de

Save
  • Akmaev, R. A., 2001: Simulation of large-scale dynamics in the mesosphere and lower thermosphere with the Doppler-spread parameterization of gravity waves. 1. Implementation and zonal mean climatologies. J. Geophys. Res., 106 , (D1). 11931204.

    • Search Google Scholar
    • Export Citation
  • Akmaev, R. A., 2007: On the energetics of mean-flow interactions with thermally dissipating gravity waves. J. Geophys. Res., 112 , D11125. doi:10.1029/2006JD007908.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Becker, E., 2004: Direct heating rates associated with gravity wave saturation. J. Atmos. Sol.-Terr. Phys., 66 , 683696.

  • Becker, E., 2009: Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J. Atmos. Sci., 66 , 647666.

  • Becker, E., and G. Schmitz, 2003: Climatological effects of orography and land–sea heating contrasts on the gravity wave–driven circulation of the mesosphere. J. Atmos. Sci., 60 , 103118.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and D. C. Fritts, 2006: Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002. Ann. Geophys., 24 , 11751188.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110 , D10108. doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd, 2002: Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations. J. Geophys. Res., 107 , 4087. doi:10.1029/2001JD000479.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., A. I. Jonsson, S. R. Beagley, K. Semeniuk, J. de Grandpré, C. McLandress, and T. G. Shepherd, 2007: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model. J. Climate, 20 , 11211144.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. J. Dunkerton, 1985: Fluxes of heat and constituents due to convectively unstable gravity waves. J. Atmos. Sci., 42 , 549556.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. E. VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 50 , 36853694.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112 , D09301. doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19 , 38823901.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution version of a GCM: Improvements in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56 , 38293846.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Solar-Terr. Phys., 59 , 371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, implementation. J. Atmos. Solar-Terr. Phys., 59 , 387400.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1999: Correction to “Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation.”. J. Atmos. Solar-Terr. Phys., 61 , 941.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., and C. A. Reddy, 1967: On the propagation of atmospheric gravity waves through regions of wind shear. J. Geophys. Res., 72 , 10151034.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Körnich, H., G. Schmitz, and E. Becker, 2006: The role of stationary waves in the maintenance of the northern annular mode as deduced from model experiments. J. Atmos. Sci., 63 , 29312947.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1971: Equatorial planetary waves in shear. Part I. J. Atmos. Sci., 28 , 609622.

  • Lindzen, R. S., 1973: Wave-mean flow interaction in the upper atmosphere. Bound.-Layer Meteor., 4 , 327343.

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Lindzen, R. S., 1990: Dynamics in Atmospheric Physics. Cambridge University Press, 310 pp.

  • Lübken, F-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res., 102 , 1344113456.

    • Search Google Scholar
    • Export Citation
  • Lübken, F-J., M. Rapp, and P. Hoffmann, 2002: Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes. J. Geophys. Res., 107 , 4273. doi:10.1029/2001JD000915.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102 , 2575125762.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., 1998: On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models. J. Atmos. Solar-Terr. Phys., 60 , 13571383.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., W. E. Ward, V. I. Fomichev, K. Semeniuk, S. R. Beagley, N. A. McFarlane, and T. G. Shepherd, 2006: Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian Middle Atmosphere Model. J. Geophys. Res., 111 , D17111. doi:10.1029/2005JD006776.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 2003: Thermal effects of saturating gravity waves in the atmosphere. J. Geophys. Res., 108 , 4040. doi:10.1029/2002JD002504.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and R. R. Garcia, 2006: On the forcing of the mesospheric semi-annual oscillation in the Whole Atmosphere Community Climate Model. Geophys. Res. Lett., 33 , L01806. doi:10.1029/2005GL024378.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Coauthors, 2006: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate, 19 , 39033931.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and T. G. Shepherd, 2007: Angular momentum conservation and gravity wave drag parameterization: Implications for climate models. J. Atmos. Sci., 64 , 190203.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • van Mieghem, J., 1973: Atmospheric Energetics. Clarendon Press, 306 pp.

  • Volodin, E. M., and G. Schmitz, 2001: A troposphere–stratosphere–mesosphere general circulation model with parameterization of gravity waves: Climatology and sensitivity studies. Tellus, 53A , 300316.

    • Search Google Scholar
    • Export Citation
  • Walterscheid, R. L., 1981: Dynamical cooling induced by dissipating internal gravity waves. Geophys. Res. Lett., 8 , 12351238.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 80 3
PDF Downloads 95 28 1