Two Types of Baroclinic Life Cycles during the Southern Hemisphere Summer

Woosok Moon Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Woosok Moon in
Current site
Google Scholar
PubMed
Close
and
Steven B. Feldstein Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Baroclinic eddy life cycles of the Southern Hemisphere (SH) summer are investigated with NCEP–NCAR reanalysis data. A composite analysis is performed for the years 1980 through 2004. Individual life cycles are identified by local maxima in synoptic-scale eddy energy. Two types of baroclinic life cycles are examined, each defined by the strength of the barotropic energy conversion 2 days prior to the maximum baroclinic growth. For one life cycle, the barotropic conversion is anomalously weak before the maximum baroclinic growth; for the other, the barotropic conversion is anomalously strong. These two life cycles are referred to as the weak barotropic (WB) and strong barotropic (SB) life cycles.

The analyses for the WB life cycle find that a poleward anomalous wave activity flux is observed within the SH tropics and subtropics just before the initial growth of the synoptic-scale eddies. In contrast, the SB life cycle exhibits an equatorward anomalous wave activity flux prior to the initial wave development. For the WB life cycle, these changes in the wave activity flux are shown to induce a mean meridional circulation that weakens and broadens the midlatitude zonal mean jet and reduces the baroclinicity in the midlatitude lower troposphere. Opposite characteristics are observed for the SB life cycle. Since the eddy growth rate is found to be greater in the WB life cycle, these results suggest that the influences of the barotropic governor mechanism (a reduction in horizontal shear coinciding with more rapidly growing baroclinic eddies) and the midlatitude baroclinicity oppose each other at the beginning of the life cycle, with the former being dominant.

Both the WB and SB life cycles coincide with anomalous tropical convection. For the WB life cycle, there is a strengthening of the convection over the Maritime Continent, and for the SB life cycle there is a weakening in the convection over the same region. These results suggest that the two types of baroclinic life cycles are ultimately triggered by convection in the tropics.

Corresponding author address: Steven Feldstein, Earth and Environmental Systems Institute, 2217 Earth-Engineering Science Building, The Pennsylvania State University, University Park, PA 16802–2711. Email: sbf@essc.psu.edu

Abstract

Baroclinic eddy life cycles of the Southern Hemisphere (SH) summer are investigated with NCEP–NCAR reanalysis data. A composite analysis is performed for the years 1980 through 2004. Individual life cycles are identified by local maxima in synoptic-scale eddy energy. Two types of baroclinic life cycles are examined, each defined by the strength of the barotropic energy conversion 2 days prior to the maximum baroclinic growth. For one life cycle, the barotropic conversion is anomalously weak before the maximum baroclinic growth; for the other, the barotropic conversion is anomalously strong. These two life cycles are referred to as the weak barotropic (WB) and strong barotropic (SB) life cycles.

The analyses for the WB life cycle find that a poleward anomalous wave activity flux is observed within the SH tropics and subtropics just before the initial growth of the synoptic-scale eddies. In contrast, the SB life cycle exhibits an equatorward anomalous wave activity flux prior to the initial wave development. For the WB life cycle, these changes in the wave activity flux are shown to induce a mean meridional circulation that weakens and broadens the midlatitude zonal mean jet and reduces the baroclinicity in the midlatitude lower troposphere. Opposite characteristics are observed for the SB life cycle. Since the eddy growth rate is found to be greater in the WB life cycle, these results suggest that the influences of the barotropic governor mechanism (a reduction in horizontal shear coinciding with more rapidly growing baroclinic eddies) and the midlatitude baroclinicity oppose each other at the beginning of the life cycle, with the former being dominant.

Both the WB and SB life cycles coincide with anomalous tropical convection. For the WB life cycle, there is a strengthening of the convection over the Maritime Continent, and for the SB life cycle there is a weakening in the convection over the same region. These results suggest that the two types of baroclinic life cycles are ultimately triggered by convection in the tropics.

Corresponding author address: Steven Feldstein, Earth and Environmental Systems Institute, 2217 Earth-Engineering Science Building, The Pennsylvania State University, University Park, PA 16802–2711. Email: sbf@essc.psu.edu

Save
  • Akahori, K., and S. Yoden, 1997: Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model. J. Atmos. Sci., 54 , 23492361.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemisphere variations. J. Atmos. Sci., 56 , 17291747.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2005: The role of wave packets in wave–mean flow interactions during Southern Hemisphere summer. J. Atmos. Sci., 62 , 24672483.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4 , 135162.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37 , 26002616.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and P. H. Haynes, 1999: Baroclinic wave breaking and the internal variability of the tropospheric circulation. J. Atmos. Sci., 56 , 40144031.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and I. M. Held, 1989: Barotropic decay of baroclinic waves in a two-layer beta-plane model. J. Atmos. Sci., 46 , 34163430.

    • Search Google Scholar
    • Export Citation
  • Gall, R. L., 1976: Structural changes of growing baroclinic waves. J. Atmos. Sci., 33 , 374390.

  • Hartmann, D. L., 2000: The key role of lower-level meridional shear in baroclinic wave life cycles. J. Atmos. Sci., 57 , 389401.

  • Held, I. M., and P. J. Phillips, 1987: Linear and nonlinear barotropic decay on the sphere. J. Atmos. Sci., 44 , 200207.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44 , 37103720.

  • James, I. N., and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112 , 12311250.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., H. S. Bedi, and V. M. Hardiker, 1998: An Introduction to Global Spectral Modeling. Oxford University Press, 253 pp.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50 , 14131428.

  • Lee, S., and H. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60 , 14901503.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64 , 25762592.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1970: Finite-amplitude baroclinic waves. J. Atmos. Sci., 27 , 1530.

  • Pedlosky, J., 1971: Finite-amplitude baroclinic waves with small dissipation. J. Atmos. Sci., 28 , 587597.

  • Pedlosky, J., 1982: Finite-amplitude baroclinic waves at minimum critical shear. J. Atmos. Sci., 39 , 555562.

  • Pierrehumbert, R. T., and K. L. Swanson, 1995: Baroclinic instability. Annu. Rev. Fluid. Mech., 27 , 419467.

  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20 , 26592674.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. L. Stanford, 1985a: An observational study of medium-scale wave dynamics in the Southern Hemisphere summer. Part I: Wave structure and energetics. J. Atmos. Sci., 42 , 11721188.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. L. Stanford, 1985b: The observed life cycle of a baroclinic instability. J. Atmos. Sci., 42 , 13641373.

  • Rao, V. B., A. M. C. Do Carmo, and S. H. Franchito, 2002: Seasonal variations in the Southern Hemisphere storm tracks and associated wave propagation. J. Atmos. Sci., 59 , 10291040.

    • Search Google Scholar
    • Export Citation
  • Riviere, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64 , 241266.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63 , 21092122.

  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35 , 414432.

  • Simmons, A. J., and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37 , 16791684.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Warn, T., and P. Gauthier, 1989: Potential vorticity mixing by marginally unstable baroclinic disturbances. Tellus, 41 , 115131.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 428 92 28
PDF Downloads 242 46 1