Average Predictability Time. Part II: Seamless Diagnoses of Predictability on Multiple Time Scales

Timothy DelSole George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Timothy DelSole in
Current site
Google Scholar
PubMed
Close
and
Michael K. Tippett International Research Institute for Climate and Society, Palisades, New York

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper proposes a new method for diagnosing predictability on multiple time scales without time averaging. The method finds components that maximize the average predictability time (APT) of a system, where APT is defined as the integral of the average predictability over all lead times. Basing the predictability measure on the Mahalanobis metric leads to a complete, uncorrelated set of components that can be ordered by their contribution to APT, analogous to the way principal components decompose variance. The components and associated APTs are invariant to nonsingular linear transformations, allowing variables with different units and natural variability to be considered in a single state vector without normalization. For prediction models derived from linear regression, maximizing APT is equivalent to maximizing the sum of squared multiple correlations between the component and the time-lagged state vector. The new method is used to diagnose predictability of 1000-hPa zonal velocity on time scales from 6 h to decades. The leading predictable component is dominated by a linear trend and presumably identifies a climate change signal. The next component is strongly correlated with ENSO indices and hence is identified with seasonal-to-interannual predictability. The third component is related to annular modes and presents decadal variability as well as a trend. The next few components have APTs exceeding 10 days. A reconstruction of the tropical zonal wind field based on the leading seven components reveals eastward propagation of anomalies with time scales consistent with the Madden–Julian oscillation. The remaining components have time scales less than a week and hence are identified with weather predictability. The detection of predictability on these time scales without time averaging is possible by virtue of the fact that predictability on different time scales is characterized by different spatial structures, which can be optimally extracted by suitable projections.

Corresponding author address: Timothy DelSole, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: delsole@cola.iges.org

Abstract

This paper proposes a new method for diagnosing predictability on multiple time scales without time averaging. The method finds components that maximize the average predictability time (APT) of a system, where APT is defined as the integral of the average predictability over all lead times. Basing the predictability measure on the Mahalanobis metric leads to a complete, uncorrelated set of components that can be ordered by their contribution to APT, analogous to the way principal components decompose variance. The components and associated APTs are invariant to nonsingular linear transformations, allowing variables with different units and natural variability to be considered in a single state vector without normalization. For prediction models derived from linear regression, maximizing APT is equivalent to maximizing the sum of squared multiple correlations between the component and the time-lagged state vector. The new method is used to diagnose predictability of 1000-hPa zonal velocity on time scales from 6 h to decades. The leading predictable component is dominated by a linear trend and presumably identifies a climate change signal. The next component is strongly correlated with ENSO indices and hence is identified with seasonal-to-interannual predictability. The third component is related to annular modes and presents decadal variability as well as a trend. The next few components have APTs exceeding 10 days. A reconstruction of the tropical zonal wind field based on the leading seven components reveals eastward propagation of anomalies with time scales consistent with the Madden–Julian oscillation. The remaining components have time scales less than a week and hence are identified with weather predictability. The detection of predictability on these time scales without time averaging is possible by virtue of the fact that predictability on different time scales is characterized by different spatial structures, which can be optimally extracted by suitable projections.

Corresponding author address: Timothy DelSole, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: delsole@cola.iges.org

Save
  • Barnston, A. G., and T. M. Smith, 1996: Specification and prediction of global surface temperature and precipitation from global SST using CCA. J. Climate, 9 , 26602697.

    • Search Google Scholar
    • Export Citation
  • Brockwell, P. J., and R. A. Davis, 1991: Time Series: Theory and Methods. 2nd ed. Springer Verlag, 577 pp.

  • DelSole, T., 2001: Optimally persistent patterns in time-varying fields. J. Atmos. Sci., 58 , 13411356.

  • DelSole, T., and M. K. Tippett, 2007: Predictability: Recent insights from information theory. Rev. Geophys., RG4002. doi:10.1029/2006RG000202.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2009: Average predictability time. Part I: Theory. J. Atmos. Sci., 66 , 11721187.

  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Johnson, R. A., and D. W. Wichern, 1982: Applied Multivariate Statistical Analysis. Prentice-Hall, 594 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Lütkepohl, H., 2005: New Introduction to Multiple Time Series Analysis. Springer, 764 pp.

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Noble, B., and J. W. Daniel, 1988: Applied Linear Algebra. 3rd ed. Prentice-Hall, 521 pp.

  • Schneider, T., and S. Griffies, 1999: A conceptual framework for predictability studies. J. Climate, 12 , 31333155.

  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282 , 728731.

  • Shukla, J., and J. L. Kinter III, 2006: Predictability of seasonal climate variations: A pedagogical view. Predictability of Weather and Climate, T. N. Palmer and R. Hagedorn, Eds., Cambridge University Press, 306–341.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128 , 647677.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 528 209 8
PDF Downloads 448 162 7