The Influence of Entrainment and Mixing Assumption on Aerosol–Cloud Interactions in Marine Stratocumulus

Adrian A. Hill NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Adrian A. Hill in
Current site
Google Scholar
PubMed
Close
,
Graham Feingold NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Graham Feingold in
Current site
Google Scholar
PubMed
Close
, and
Hongli Jiang Cooperative Institute for Research in the Atmosphere, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Hongli Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses large-eddy simulation with bin microphysics to investigate the influence of entrainment and mixing on aerosol–cloud interactions in the context of idealized, nocturnal, nondrizzling marine stratocumulus (Sc). Of particular interest are (i) an evaporation–entrainment effect and a sedimentation–entrainment effect that result from increasing aerosol concentrations and (ii) the nature of mixing between clear and cloudy air, where homogeneous and extreme inhomogeneous mixing represent the bounding mixing types. Simulations are performed at low resolution (Δz = 20 m; Δx, y = 40 m) and high resolution (Δz = 10 m; Δx, y = 20 m). It is demonstrated that an increase in aerosol from clean conditions (100 cm−3) to polluted conditions (1000 cm−3) produces both an evaporation–entrainment and a sedimentation–entrainment effect, which couple to cause about a 10% decrease in liquid water path (LWP) when all warm microphysical processes are included. These dynamical effects are insensitive to both the resolutions tested and the mixing assumption. Regardless of resolution, assuming extreme inhomogeneous rather than homogeneous mixing results in a small reduction in cloud-averaged drop number concentration, a small increase in cloud drop effective radius, and ∼1% decrease in cloud optical depth. For the case presented, these small changes play a negligible role when compared to the impact of increasing aerosol and the associated entrainment effects. Finally, it is demonstrated that although increasing resolution causes an increase in LWP and number concentration, the relative sensitivity of cloud optical depth to changes in aerosol is unaffected by resolution.

Corresponding author address: A. A. Hill, Met Office, Fitzroy Road, Exeter, Devon EX1 3PB, United Kingdom. Email: adrian.hill@metoffice.gov.uk

Abstract

This study uses large-eddy simulation with bin microphysics to investigate the influence of entrainment and mixing on aerosol–cloud interactions in the context of idealized, nocturnal, nondrizzling marine stratocumulus (Sc). Of particular interest are (i) an evaporation–entrainment effect and a sedimentation–entrainment effect that result from increasing aerosol concentrations and (ii) the nature of mixing between clear and cloudy air, where homogeneous and extreme inhomogeneous mixing represent the bounding mixing types. Simulations are performed at low resolution (Δz = 20 m; Δx, y = 40 m) and high resolution (Δz = 10 m; Δx, y = 20 m). It is demonstrated that an increase in aerosol from clean conditions (100 cm−3) to polluted conditions (1000 cm−3) produces both an evaporation–entrainment and a sedimentation–entrainment effect, which couple to cause about a 10% decrease in liquid water path (LWP) when all warm microphysical processes are included. These dynamical effects are insensitive to both the resolutions tested and the mixing assumption. Regardless of resolution, assuming extreme inhomogeneous rather than homogeneous mixing results in a small reduction in cloud-averaged drop number concentration, a small increase in cloud drop effective radius, and ∼1% decrease in cloud optical depth. For the case presented, these small changes play a negligible role when compared to the impact of increasing aerosol and the associated entrainment effects. Finally, it is demonstrated that although increasing resolution causes an increase in LWP and number concentration, the relative sensitivity of cloud optical depth to changes in aerosol is unaffected by resolution.

Corresponding author address: A. A. Hill, Met Office, Fitzroy Road, Exeter, Devon EX1 3PB, United Kingdom. Email: adrian.hill@metoffice.gov.uk

Save
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432 , 10141017. doi:10.1038/nature03174.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2006: Numerical simulation of cloud–clear air interfacial mixing: Effects on cloud microphysics. J. Atmos. Sci., 63 , 32043225.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36 , 16121615.

    • Search Google Scholar
    • Export Citation
  • Bower, K., T. Choularton, J. Latham, J. Nelson, M. Baker, J. Jensen, and A. Blyth, 1992: Microphysical properties of warm clouds. Proc. 11th Int. Conf. on Clouds and Precipitation, Montreal, QC, Canada, WMO, 133–134.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125 , 391423.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34 , L03813. doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., 1999: The sensitivity of large-eddy simulations of shallow cumulus convection to resolution and subgrid model. Quart. J. Roy. Meteor. Soc., 125 , 469482.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64 , 19952011.

    • Search Google Scholar
    • Export Citation
  • Chosson, F., J-L. Brenguier, and L. Schüller, 2007: Entrainment mixing and radiative transfer simulation in boundary layer clouds. J. Atmos. Sci., 64 , 26702682.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30 , 857878.

  • Clark, T. L., 1974: A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci., 31 , 142155.

  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37 , 131147.

  • Duynkerke, G. P., and Coauthors, 2004: Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quart. J. Roy. Meteor. Soc., 130 , 32693296.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122 , 689719.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. P. Malinowski, J-L. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62 , 443459.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19 , 46644682.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2007: Representation of turbulent mixing and buoyancy reversal in bulk cloud models. J. Atmos. Sci., 64 , 36663680.

  • Gray, M. E. B., J. Petch, S. H. Derbyshire, A. R. Brown, A. P. Lock, H. A. Swann, and P. R. A. Brown, 2001: Version 2.3 of the Met Office Large Eddy Model: Part II. Scientific documentation. APR turbulence and diffusion note 276, Met Office, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Haman, K. E., S. P. Malinowski, M. J. Kurowski, H. Gerber, and J-L. Brenguier, 2007: Small scale mixing processes at the top of a marine stratocumulus—A case study. Quart. J. Roy. Meteor. Soc., 133 , 213226. doi:10.1002/qj.5.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., S. Dobbie, and Y. Yin, 2008: The impact of aerosols on non-precipitating marine stratocumulus: Part 1. Model description and prediction of the indirect effect. Quart. J. Roy. Meteor. Soc., 134 , 11431154.

    • Search Google Scholar
    • Export Citation
  • Jeffery, C. A., 2007: Inhomogeneous cloud evaporation, invariance, and Damköhler number. J. Geophys. Res., 112 , D24S21. doi:10.1029/2007JD008789.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., P. H. Austin, M. B. Baker, and A. M. Blyth, 1985: Turbulent mixing, spectral evolution, and dynamics in a warm cumulus cloud. J. Atmos. Sci., 42 , 173192.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol–cloud–surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111 , D01202. doi:10.1029/2005JD006138.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and W. J. Martin, 1994: Parameterization of bulk condensation in numerical cloud models. J. Atmos. Sci., 51 , 17281739.

  • Krueger, S., 1993: Linear eddy modeling of entrainment and mixing in stratus clouds. J. Atmos. Sci., 50 , 30783090.

  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • MacVean, M. K., and P. J. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47 , 10121030.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57 , 295311.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., D. H. Lenschow, and D. A. Randall, 1995: Numerical investigations of the roles of radiative and evaporative feedbacks in stratocumulus entrainment and breakup. J. Atmos. Sci., 52 , 28692883.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65 , 792812.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1987: A model of drizzle growth in warm, turbulent, stratiform clouds. Quart. J. Roy. Meteor. Soc., 113 , 11411170.

  • Noonkester, V. R., 1984: Droplet spectra observed in marine stratus cloud layers. J. Atmos. Sci., 41 , 829845.

  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37 , 125130.

  • Sandu, I., J-L. Brenguier, O. Geoffroy, O. Thouron, and V. Masson, 2008: Aerosol impacts on the diurnal cycle of marine stratocumulus. J. Atmos. Sci., 65 , 27052718.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. I. General characteristics. Aust. J. Sci. Res., 5 , 5986.

  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53 , 9801006.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133 , 14431462.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and C. S. Bretherton, 1999: Effects of resolution on the simulation of stratocumulus entrainment. Quart. J. Roy. Meteor. Soc., 125 , 425439.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44 , 31393149.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46 , 33123328.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and B. A. Albrecht, 1994: Observations of cloud-top entrainment in marine stratocumulus clouds. J. Atmos. Sci., 51 , 15301547.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and G. Feingold, 2003: Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J. Atmos. Sci., 60 , 262278.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62 , 30113033.

    • Search Google Scholar
    • Export Citation
  • Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63 , 16051622.

    • Search Google Scholar
    • Export Citation
  • Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65 , 392406.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65 , 14811504.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 682 258 21
PDF Downloads 486 146 17