• Ambaum, M. H. P., , and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15 , 19691978.

  • Ambaum, M. H. P., , B. J. Hoskins, , and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation. J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., , and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104 , 3093730946.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 , 581584.

  • Baldwin, M. P., , X. Cheng, , and T. J. Dunkerton, 1994: Observed correlations between winter-mean tropospheric and stratospheric circulation anomalies. Geophys. Res. Lett., 21 , 11411144.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , D. B. Stephenson, , D. W. J. Thompson, , T. J. Dunkerton, , A. J. Charlton, , and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301 , 636640.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , M. Dameris, , and T. G. Shepherd, 2007: How will the stratosphere affect climate change? Science, 316 , 15761577.

  • Benedict, J. J., , S. Lee, , and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61 , 121144.

  • Blessing, S., , K. Fraedrich, , M. Junge, , T. Kunz, , and F. Lunkeit, 2005: Daily North Atlantic Oscillation (NAO) index: Statistics and its stratospheric polar vortex dependence. Meteor. Z., 14 , 763769.

    • Search Google Scholar
    • Export Citation
  • Canziani, P. O., , and W. E. Legnani, 2003: Tropospheric–stratospheric coupling: Extratropical synoptic systems in the lower stratosphere. Quart. J. Roy. Meteor. Soc., 129 , 23152329.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , A. O’Neill, , W. A. Lahoz, , and A. C. Massacand, 2004: Sensitivity of tropospheric forecasts to stratospheric initial conditions. Quart. J. Roy. Meteor. Soc., 130 , 17711792.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 277 pp.

  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129 , 901924.

  • Fraedrich, K., , E. Kirk, , and F. Lunkeit, 1998: Portable University Model of the Atmosphere. Deutsches Klimarechenzentrum Tech. Rep. 16, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., , E. Kirk, , U. Luksch, , and F. Lunkeit, 2005: The Portable University Model of the Atmosphere (PUMA): Storm track dynamics and low-frequency variability. Meteor. Z., 14 , 735745.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , S. Lee, , and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61 , 145160.

  • Hartmann, D. L., 2000: The key role of lower-level meridional shear in baroclinic wave life cycles. J. Atmos. Sci., 57 , 389401.

  • Hartmann, D. L., , and P. Zuercher, 1998: Response of baroclinic life cycles to barotropic shear. J. Atmos. Sci., 55 , 297313.

  • Haynes, P. H., , M. E. McIntyre, , T. G. Shepherd, , C. J. Marks, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Heifetz, E., , C. H. Bishop, , B. J. Hoskins, , and J. Methven, 2004: The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basis. Quart. J. Roy. Meteor. Soc., 130 , 211231.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101 , 637655.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., , K. Fraedrich, , and F. Lunkeit, 2009: Synoptic-scale wave breaking and its potential to drive NAO-like circulation dipoles: A simplified GCM approach. Quart. J. Roy. Meteor. Soc., 135 , 119.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17 , 629639.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., , and H. van Loon, 1988: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the Northern Hemisphere in winter. J. Atmos. Terr. Phys., 50 , 197206.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16 , 12121227.

  • Magnusdottir, G., , and P. H. Haynes, 1996: Wave activity diagnostics applied to baroclinic wave life cycles. J. Atmos. Sci., 53 , 23172353.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27 , 871883.

  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28 , 14791494.

  • Methven, J., , B. J. Hoskins, , E. Heifetz, , and C. H. Bishop, 2005: The counter-propagating Rossby-wave perspective on baroclinic instability. Part IV: Nonlinear life cycles. Quart. J. Roy. Meteor. Soc., 131 , 14251440.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60 , 9931023.

  • Perlwitz, J., , and H-F. Graf, 1995: The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J. Climate, 8 , 22812295.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., , and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16 , 30113026.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29 , 1114. doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., , and I. Orlanski, 2007: Characteristics of the Atlantic storm-track activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64 , 241266.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., , J. R. Knight, , G. K. Vallis, , and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32 , L18715. doi:10.1029/2005GL023226.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37 , 16791684.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and D. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , M. P. Baldwin, , and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15 , 14211428.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. C. Furtado, , and T. G. Shepherd, 2006: On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci., 63 , 26162629.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., , and P. Speth, 1991: The global energy cycle of stationary and transient atmospheric waves—Results from ECMWF analyses. Meteor. Atmos. Phys., 45 , 125138.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., , L. M. Polvani, , R. K. Scott, , and A. J. Charlton, 2004: Stratospheric influence on baroclinic life cycles and its connection to the Arctic Oscillation. Geophys. Res. Lett., 31 , L16113. doi:10.1029/2004GL020503.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., , A. J. Charlton, , and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64 , 479496.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , B. Hoskins, , M. Blackburn, , and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65 , 609626.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 5
PDF Downloads 14 14 6

Response of Idealized Baroclinic Wave Life Cycles to Stratospheric Flow Conditions

View More View Less
  • 1 Meteorologisches Institut, Universität Hamburg, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

Dynamical stratosphere–troposphere coupling through a response of baroclinic waves to lower stratospheric flow conditions is investigated from an initial value approach. A series of adiabatic and frictionless nonlinear baroclinic wave life cycles in a midlatitude tropospheric jet with different initial zonal flow conditions in the stratosphere is simulated, using a dry primitive equation model with spherical geometry. When a stratospheric jet, located at various latitudes between 35° and 70°, is removed from the initial conditions, the wavenumber-6 life cycle behavior changes from the well-known LC1 to LC2 evolution, characterized by anticyclonic and cyclonic wave breaking, respectively. Linear theory, in terms of refractive index and the structure of the corresponding fastest-growing normal mode, is found to be unable to explain this stratosphere-induced LC1 to LC2 transition. This implies that altered nonlinear wave–mean flow interactions are important. The most significant stratosphere-induced change that extends into the nonlinear baroclinic growth stage is a region of downward wave propagation in the lower stratosphere associated with positive values of the squared refractive index near 20 km. Furthermore, it is demonstrated that the difference between the response of the tropospheric circulation to LC1 and LC2 life cycles closely resembles the meridional and vertical structure of the North Atlantic Oscillation (NAO), with positive (negative) NAO-like anomalies being driven by LC1 (LC2). Thus, a weakened stratospheric jet induces the generation of negative NAO-like anomalies in the troposphere, consistent with the observed stratosphere–NAO connection.

Corresponding author address: Torben Kunz, Meteorologisches Institut, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany. Email: torben.kunz@zmaw.de

Abstract

Dynamical stratosphere–troposphere coupling through a response of baroclinic waves to lower stratospheric flow conditions is investigated from an initial value approach. A series of adiabatic and frictionless nonlinear baroclinic wave life cycles in a midlatitude tropospheric jet with different initial zonal flow conditions in the stratosphere is simulated, using a dry primitive equation model with spherical geometry. When a stratospheric jet, located at various latitudes between 35° and 70°, is removed from the initial conditions, the wavenumber-6 life cycle behavior changes from the well-known LC1 to LC2 evolution, characterized by anticyclonic and cyclonic wave breaking, respectively. Linear theory, in terms of refractive index and the structure of the corresponding fastest-growing normal mode, is found to be unable to explain this stratosphere-induced LC1 to LC2 transition. This implies that altered nonlinear wave–mean flow interactions are important. The most significant stratosphere-induced change that extends into the nonlinear baroclinic growth stage is a region of downward wave propagation in the lower stratosphere associated with positive values of the squared refractive index near 20 km. Furthermore, it is demonstrated that the difference between the response of the tropospheric circulation to LC1 and LC2 life cycles closely resembles the meridional and vertical structure of the North Atlantic Oscillation (NAO), with positive (negative) NAO-like anomalies being driven by LC1 (LC2). Thus, a weakened stratospheric jet induces the generation of negative NAO-like anomalies in the troposphere, consistent with the observed stratosphere–NAO connection.

Corresponding author address: Torben Kunz, Meteorologisches Institut, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany. Email: torben.kunz@zmaw.de

Save