• Babiano, A., , J. H. E. Cartwright, , O. Piro, , and A. Provenzale, 2000: Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett., 84 , 57645767.

    • Search Google Scholar
    • Export Citation
  • Beven, J., , and H. Cobb, cited. 2003: Tropical cyclone report: Hurricane Isabel. National Hurricane Center, National Weather Service. [Available online at http://www.nhc.noaa.gov/2003isabel.shtml].

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., , J. Persing, , M. T. Montgomery, , and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high resolution of Hurricane Bonnie (1998). J. Atmos. Sci., 64 , 18351856.

    • Search Google Scholar
    • Export Citation
  • Dávila, J., , and J. C. Vassilicos, 2003: Richardson’s pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett., 91 , 144501. doi:10.1103/PhysRevLett.91.144501.

    • Search Google Scholar
    • Export Citation
  • Du Toit, P. C. D., , J. E. Marsden, , and S. S. Chen, 2007: Visualizing and quantifying transport in hurricanes. Eos, Trans. Amer. Geophys. Union, 88 .(Fall Meeting Suppl.). Abstract A21C–0647.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45 , 11431155.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , C. DesAutels, , C. Holloway, , and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61 , 843858.

    • Search Google Scholar
    • Export Citation
  • Green, M. A., , C. W. Rowley, , and G. Haller, 2007: Detection of Lagrangian coherent structures in 3D turbulence. J. Fluid Mech., 572 , 111120.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001: Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D, 149 , 248277.

  • Haller, G., 2005: An objective definition of a vortex. J. Fluid Mech., 525 , 126.

  • Haller, G., , and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147 , 352370.

  • Haller, G., , and T. Sapsis, 2008: ‘Where do inertial particles go in fluid flows?’. Physica D, 237 , 573583.

  • Hendricks, E., , and W. H. Schubert, 2008: Aspects of chaotic mixing in the hurricane inner-core. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 14C.2. [Available online at http://ams.confex.com/ams/pdfpapers/138212.pdf].

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , S. S. Chen, , B. Smull, , W. C. Lee, , and M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315 , 12351239.

    • Search Google Scholar
    • Export Citation
  • Jeong, J., , and F. Hussain, 1995: On the identification of a vortex. J. Fluid Mech., 285 , 6994.

  • Lekien, F., , S. Shadden, , and J. Marsden, 2007: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys., 48 , 119.

  • Mathur, M., , G. Haller, , T. Peacock, , J. Ruppert-Felsot, , and H. Swinney, 2007: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett., 98 , 144502. doi:10.1103/PhysRevLett.98.144502.

    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., , and J. J. Riley, 1983: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26 , 883889.

  • Michaelides, E. E., 1997: The transient equation of motion for particles, bubbles, and droplets. J. Fluids Eng., 119 , 233247.

  • Möller, J. D., , and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. M. Bell, , S. M. Aberson, , and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87 , 13351347.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Rozoff, C. M., , W. H. Schubert, , B. D. McNoldy, , and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63 , 325340.

    • Search Google Scholar
    • Export Citation
  • Sapsis, T., , and G. Haller, 2008a: Inertial particle’s motion in geophysical fluid flows. Proc. Sixth EUROMECH Nonlinear Dynamics Conf., St. Petersburg, Russia, European Mechanics Society, 1–7.

    • Search Google Scholar
    • Export Citation
  • Sapsis, T., , and G. Haller, 2008b: Instabilities in the dynamics of neutrally buoyant particles. Phys. Fluids, 20 , 017102. doi:10.1063/1.2830328.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., , and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64 , 314337.

  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., , F. Lekien, , and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures: Mixing and transport in two-dimensional aperiodic flows. Physica D, 212 , 271304.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., , J. O. Dabiri, , and J. E. Marsden, 2006: Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids, 18 , 047105. doi:10.1063/1.2189885.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., , and P. Haynes, 2003: Diagnostic transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15 , 33423357.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Voth, G. A., , G. Haller, , and J. Gollub, 2002: Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett., 88 , 254501. doi:10.1103/PhysRevLett.88.254501.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 11581181.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 21
PDF Downloads 65 65 16

Inertial Particle Dynamics in a Hurricane

View More View Less
  • 1 Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally attracting slow manifold in the phase space of particle motions. Use of the inertial equation enables the visualization of three-dimensional inertial Lagrangian coherent structures (ILCS) on the slow manifold. These ILCS govern the asymptotic behavior of finite-size particles within a hurricane. A comparison of the attracting ILCS with conventional Eulerian fields reveals the Lagrangian footprint of the hurricane eyewall and of a large rainband. By contrast, repelling ILCS within the eye region admit a more complex geometry that cannot be compared directly with Eulerian features.

Corresponding author address: George Haller, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Email: ghaller@mit.edu

Abstract

The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally attracting slow manifold in the phase space of particle motions. Use of the inertial equation enables the visualization of three-dimensional inertial Lagrangian coherent structures (ILCS) on the slow manifold. These ILCS govern the asymptotic behavior of finite-size particles within a hurricane. A comparison of the attracting ILCS with conventional Eulerian fields reveals the Lagrangian footprint of the hurricane eyewall and of a large rainband. By contrast, repelling ILCS within the eye region admit a more complex geometry that cannot be compared directly with Eulerian features.

Corresponding author address: George Haller, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Email: ghaller@mit.edu

Save