Inertial Particle Dynamics in a Hurricane

Themistoklis Sapsis Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Themistoklis Sapsis in
Current site
Google Scholar
PubMed
Close
and
George Haller Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by George Haller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally attracting slow manifold in the phase space of particle motions. Use of the inertial equation enables the visualization of three-dimensional inertial Lagrangian coherent structures (ILCS) on the slow manifold. These ILCS govern the asymptotic behavior of finite-size particles within a hurricane. A comparison of the attracting ILCS with conventional Eulerian fields reveals the Lagrangian footprint of the hurricane eyewall and of a large rainband. By contrast, repelling ILCS within the eye region admit a more complex geometry that cannot be compared directly with Eulerian features.

Corresponding author address: George Haller, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Email: ghaller@mit.edu

Abstract

The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally attracting slow manifold in the phase space of particle motions. Use of the inertial equation enables the visualization of three-dimensional inertial Lagrangian coherent structures (ILCS) on the slow manifold. These ILCS govern the asymptotic behavior of finite-size particles within a hurricane. A comparison of the attracting ILCS with conventional Eulerian fields reveals the Lagrangian footprint of the hurricane eyewall and of a large rainband. By contrast, repelling ILCS within the eye region admit a more complex geometry that cannot be compared directly with Eulerian features.

Corresponding author address: George Haller, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Email: ghaller@mit.edu

Save
  • Babiano, A., J. H. E. Cartwright, O. Piro, and A. Provenzale, 2000: Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems. Phys. Rev. Lett., 84 , 57645767.

    • Search Google Scholar
    • Export Citation
  • Beven, J., and H. Cobb, cited. 2003: Tropical cyclone report: Hurricane Isabel. National Hurricane Center, National Weather Service. [Available online at http://www.nhc.noaa.gov/2003isabel.shtml].

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high resolution of Hurricane Bonnie (1998). J. Atmos. Sci., 64 , 18351856.

    • Search Google Scholar
    • Export Citation
  • Dávila, J., and J. C. Vassilicos, 2003: Richardson’s pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett., 91 , 144501. doi:10.1103/PhysRevLett.91.144501.

    • Search Google Scholar
    • Export Citation
  • Du Toit, P. C. D., J. E. Marsden, and S. S. Chen, 2007: Visualizing and quantifying transport in hurricanes. Eos, Trans. Amer. Geophys. Union, 88 .(Fall Meeting Suppl.). Abstract A21C–0647.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45 , 11431155.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61 , 843858.

    • Search Google Scholar
    • Export Citation
  • Green, M. A., C. W. Rowley, and G. Haller, 2007: Detection of Lagrangian coherent structures in 3D turbulence. J. Fluid Mech., 572 , 111120.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001: Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D, 149 , 248277.

  • Haller, G., 2005: An objective definition of a vortex. J. Fluid Mech., 525 , 126.

  • Haller, G., and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147 , 352370.

  • Haller, G., and T. Sapsis, 2008: ‘Where do inertial particles go in fluid flows?’. Physica D, 237 , 573583.

  • Hendricks, E., and W. H. Schubert, 2008: Aspects of chaotic mixing in the hurricane inner-core. Preprints, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 14C.2. [Available online at http://ams.confex.com/ams/pdfpapers/138212.pdf].

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. S. Chen, B. Smull, W. C. Lee, and M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315 , 12351239.

    • Search Google Scholar
    • Export Citation
  • Jeong, J., and F. Hussain, 1995: On the identification of a vortex. J. Fluid Mech., 285 , 6994.

  • Lekien, F., S. Shadden, and J. Marsden, 2007: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys., 48 , 119.

  • Mathur, M., G. Haller, T. Peacock, J. Ruppert-Felsot, and H. Swinney, 2007: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett., 98 , 144502. doi:10.1103/PhysRevLett.98.144502.

    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., and J. J. Riley, 1983: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26 , 883889.

  • Michaelides, E. E., 1997: The transient equation of motion for particles, bubbles, and droplets. J. Fluids Eng., 119 , 233247.

  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. M. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87 , 13351347.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63 , 325340.

    • Search Google Scholar
    • Export Citation
  • Sapsis, T., and G. Haller, 2008a: Inertial particle’s motion in geophysical fluid flows. Proc. Sixth EUROMECH Nonlinear Dynamics Conf., St. Petersburg, Russia, European Mechanics Society, 1–7.

    • Search Google Scholar
    • Export Citation
  • Sapsis, T., and G. Haller, 2008b: Instabilities in the dynamics of neutrally buoyant particles. Phys. Fluids, 20 , 017102. doi:10.1063/1.2830328.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64 , 314337.

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., F. Lekien, and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures: Mixing and transport in two-dimensional aperiodic flows. Physica D, 212 , 271304.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., J. O. Dabiri, and J. E. Marsden, 2006: Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids, 18 , 047105. doi:10.1063/1.2189885.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., and P. Haynes, 2003: Diagnostic transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15 , 33423357.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Voth, G. A., G. Haller, and J. Gollub, 2002: Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett., 88 , 254501. doi:10.1103/PhysRevLett.88.254501.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 11581181.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 787 242 9
PDF Downloads 524 165 5