• Austin, J., and Coauthors, 2008: Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., 113 , D11306. doi:10.1029/2007JD009391.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39 , 179229.

  • Callis, L. B., , M. Natarajan, , and J. D. Lambeth, 2001: Solar atmospheric coupling by electrons (SOLACE) 3. Comparisons of simulations and observations, 1979–1997, issues and implications. J. Geophys. Res., 106 , 75237539.

    • Search Google Scholar
    • Export Citation
  • Crooks, S. A., , and L. J. Gray, 2005: Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J. Climate, 18 , 9961015.

    • Search Google Scholar
    • Export Citation
  • Dethof, A., , and E. Holm, 2002: Ozone in ERA-40: 1991–1996. ECMWF Internal Rep. 377, 37 pp.

  • Fels, S. B., , J. D. Mahlman, , M. D. Schwarzkopf, , and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37 , 22652297.

    • Search Google Scholar
    • Export Citation
  • Fioletov, V. E., , and T. G. Shepherd, 2005: Summertime total ozone variations over middle and polar latitudes. Geophys. Res. Lett., 32 , L04807. doi:10.1029/2004GL022080.

    • Search Google Scholar
    • Export Citation
  • Forster, P., , and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone depletion. J. Geophys. Res., 102 , 1084110855.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–134.

    • Search Google Scholar
    • Export Citation
  • Fortuin, J. P. F., , and U. Langematz, 1995: An update on the global ozone climatology and on concurrent ozone and temperature trends. Atmospheric Sensing and Modeling, R. P. Santer, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 2311), 207–216.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., , and J. A. Pyle, 1989: A two-dimensional model of the quasi-biennial oscillation of ozone. J. Atmos. Sci., 46 , 203220.

  • Gray, L. J., , S. Crooks, , C. Pascoe, , S. Sparrow, , and M. Palmer, 2004: Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61 , 27772796.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., , J. D. Haigh, , and R. G. Harrison, 2005: The influence of solar changes on the Earth’s climate. Hadley Centre Tech. Note 62, 82 pp. [Available online at http://www.metoffice.gov.uk/publications/HCTN/HCTN_62.pdf].

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., 1994: The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370 , 544546.

  • Haigh, J. D., 1999: A GCM study of climate change in response to the 11-year solar cycle. Quart. J. Roy. Meteor. Soc., 125 , 871892.

  • Haigh, J. D., 2003: The effects of solar variability on the Earth’s climate. Philos. Trans. Roy. Soc. London, 361 , 95111.

  • Hamilton, K., 2002: On the quasi-decadal modulation of the stratospheric QBO period. J. Climate, 15 , 25622565.

  • Hansen, J., , M. Sato, , and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 , 68316864.

  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110 , D18104. doi:10.1029/2005JD005776.

  • Hood, L. L., 1997: The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere. J. Geophys. Res., 102 , 13551370.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., 2004: Effects of solar UV variability on the stratosphere. Solar Variability and Its Effects on Climate, Geophys. Monogr., Vol. 141, Amer. Geophys. Union, 283–303.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., , and B. E. Soukharev, 2003: Quasi-decadal variability of the tropical lower stratosphere: The role of extratropical wave forcing. J. Atmos. Sci., 60 , 23892403.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., , and B. E. Soukharev, 2006: Solar-induced variations of odd nitrogen: Multiple regression analysis of UARS HALOE data. Geophys. Res. Lett., 33 , L22805. doi:10.1029/2006GL028122.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., , J. L. Jirikowic, , and J. P. McCormack, 1993: Quasi-decadal variability of the stratosphere: Influence of long-term solar ultraviolet variations. J. Atmos. Sci., 50 , 39413958.

    • Search Google Scholar
    • Export Citation
  • Isaksen, I. S. A., and Coauthors, 2008: Radiative forcing from modelled and observed stratospheric ozone changes due to the 11-year solar cycle. Atmos. Chem. Phys. Discuss., 8 , 43534371.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , and B. A. Boville, 1988: The radiative–dynamical response of a stratospheric–tropospheric general circulation model to changes in ozone. J. Atmos. Sci., 45 , 17981817.

    • Search Google Scholar
    • Export Citation
  • Kneizys, F. X., , E. P. Shettle, , L. W. Abreu, , J. H. Chetwynd, , and G. P. Anderson, 1988: Users’ guide to LOWTRAN 7. Air Force Geophysics Lab Rep. A377602, 146 pp.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., 1995: On the origin and nature of the interannual variability of the winter stratospheric circulation in the Northern Hemisphere. J. Geophys. Res., 100 , 1407714087.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., , and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107 , 4749. doi:10.1029/2002JD002224.

  • Lean, J., 2000: Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett., 27 , 24252428.

  • Lean, J., , G. J. Rottman, , H. L. Kyle, , T. N. Woods, , J. R. Hickey, , and L. C. Puga, 1997: Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm). J. Geophys. Res., 102 , 2993929956.

    • Search Google Scholar
    • Export Citation
  • Lean, J., , G. Rottman, , J. Harder, , and G. Kopp, 2005: SORCE contributions to new understanding of global change. Sol. Phys., 230 , 2753.

    • Search Google Scholar
    • Export Citation
  • Lee, H., , and A. K. Smith, 2003: Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades. J. Geophys. Res., 108 , 4049. doi:10.1029/2001JD001503.

    • Search Google Scholar
    • Export Citation
  • Li, D., , and K. P. Shine, 1995: A 4-dimensional ozone climatology for UGAMP models. UGAMP Internal Rep. 35, 45 pp.

  • McCormack, J. P., 2003: The influence of the 11-year solar cycle on the quasi-biennial oscillation. Geophys. Res. Lett., 30 , 2162. doi:10.1029/2003GL018314.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., , and L. L. Hood, 1996: Apparent solar cycle variations of upper stratospheric ozone and temperature: Latitude and seasonal dependences. J. Geophys. Res., 101 , 2093320944.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., , D. E. Siskind, , and L. L. Hood, 2007: The solar–QBO interaction and its impact on stratospheric ozone in a zonally averaged photochemical transport model of the middle atmosphere. J. Geophys. Res., 112 , D16109. doi:10.1029/2006JD008369.

    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., , G. J. Labow, , and J. A. Logan, 2007: Ozone climatological profiles for satellite retrieval algorithms. J. Geophys. Res., 112 , D05308. doi:10.1029/2005JD006823.

    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., , L. J. Gray, , S. A. Crooks, , M. N. Juckes, , and M. P. Baldwin, 2005: The quasi-biennial oscillation: Analysis using ERA-40 data. J. Geophys. Res., 110 , D08105. doi:10.1029/2004JD004941.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001a: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39 , 71122.

  • Ramaswamy, V., and Coauthors, 2001b: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 2007: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res., 112 , D06313. doi:10.1029/2006JD007339.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114 , D02107. doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Rosier, S. M., , and K. P. Shine, 2000: The effect of two decades of ozone change on stratospheric temperatures as indicated by a general circulation model. Geophys. Res. Lett., 27 , 26172620.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Salby, M., , and P. Callaghan, 2000: Connection between the solar cycle and the QBO: The missing link? J. Climate, 13 , 328338.

  • Salby, M., , and P. Callaghan, 2006: Relationship of the quasi-biennial oscillation to the stratospheric signature of the solar cycle. J. Geophys. Res., 111 , D06110. doi:10.1029/2005JD006012.

    • Search Google Scholar
    • Export Citation
  • Scaife, A., , J. Austin, , N. Butchart, , S. Pawson, , M. Keil, , J. Nash, , and I. N. James, 2000: Seasonal and interannual variability of the stratosphere diagnosed from UKMO TOVS analyses. Quart. J. Roy. Meteor. Soc., 126 , 25852604.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., , and K. Kodera, 2005: Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle. J. Atmos. Sol. Terr. Phys., 67 , 125143.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., , D. Rind, , N. Balachandran, , J. Lean, , and P. Lonergan, 1999: Solar cycle variability, ozone and climate. Science, 284 , 305308.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Soukharev, B. E., , and L. L. Hood, 2006: Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets and comparison with models. J. Geophys. Res., 111 , D20314. doi:10.1029/2006JD007107.

    • Search Google Scholar
    • Export Citation
  • Tourpali, K., , C. S. Zerefos, , D. S. Balis, , and A. F. Bais, 2007: The 11-year solar cycle in stratospheric ozone: Comparison between Umkehr and SBUVv8 and effects on surface erythemal irradiance. J. Geophys. Res., 112 , D12306. doi:10.1029/2006JD007760.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wigley, T. M. L., , C. M. Ammann, , B. D. Santer, , and S. C. B. Raper, 2005: Effect of climate sensitivity on the response to volcanic forcing. J. Geophys. Res., 110 , D09107. doi:10.1029/2004JD005557.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 21
PDF Downloads 45 45 11

Stratospheric Temperature and Radiative Forcing Response to 11-Year Solar Cycle Changes in Irradiance and Ozone

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric Sounding Unit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m−2, which is only 78% of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m−2 owing to strong compensation between negative shortwave and positive longwave forcings.

Corresponding author address: Professor Lesley J. Gray, National Centre for Atmospheric Science, Dept. of Meteorology, University of Reading, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: l.j.gray@rdg.ac.uk

Abstract

The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric Sounding Unit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m−2, which is only 78% of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m−2 owing to strong compensation between negative shortwave and positive longwave forcings.

Corresponding author address: Professor Lesley J. Gray, National Centre for Atmospheric Science, Dept. of Meteorology, University of Reading, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: l.j.gray@rdg.ac.uk

Save