• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bowman, K. P., 1995: Diffusive transport by breaking waves. J. Atmos. Sci., 52 , 24162427.

  • Bowman, K. P., , and P. J. Cohen, 1997: Interhemispheric exchange by seasonal modulation of the Hadley circulation. J. Atmos. Sci., 54 , 20452059.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., , and G. D. Carrie, 2002: The mean-meridional transport circulation of the troposphere in an idealized GCM. J. Atmos. Sci., 59 , 15021514.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., , and T. Erukhimova, 2004: Comparison of global-scale Lagrangian transport properties of the NCEP reanalysis and CCM3. J. Climate, 17 , 11351146.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., , U. Schumann, , and R. Stull, 1989: Nonlocal turbulent mixing in the convective boundary layer evaluated from large-eddy simulation. J. Atmos. Sci., 46 , 21782207.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., , A. Sobel, , and I. Held, 2005: Diagnosis of subtropical humidity dynamics using tracers of last saturation. J. Atmos. Sci., 62 , 33533367.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., , H. Zhang, , D. Waugh, , and M. Holzer, 2008: On transit-time distributions in unsteady circulation models. Ocean Modell., 21 , 3545. doi:10.1016/j.ocemod.2007.11.004.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., , and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99 , 10591070.

  • Hall, T. M., , and M. Holzer, 2003: Advective–diffusive mass flux and implications for stratosphere–troposphere exchange. Geophys. Res. Lett., 30 , 1222. doi:10.1029/2002GL016419.

    • Search Google Scholar
    • Export Citation
  • Heimann, M., , and C. D. Keeling, 1986: Meridional eddy diffusion model of the transport of atmospheric carbon dioxide 1. Seasonal carbon cycle over the tropical Pacific Ocean. J. Geophys. Res., 91 , 77657781.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., 2009: The path density of interhemispheric surface-to-surface transport. Part II: Transport through the troposphere and stratosphere diagnosed from NCEP data. J. Atmos. Sci., 66 , 21722189.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., , and T. M. Hall, 2000: Transit-time and tracer-age distributions in geophysical flows. J. Atmos. Sci., 57 , 35393558.

  • Holzer, M., , and G. J. Boer, 2001: Simulated changes in atmospheric transport climate. J. Climate, 14 , 43984420.

  • Holzer, M., , and F. W. Primeau, 2006: The diffusive ocean conveyor. Geophys. Res. Lett., 33 , L14618. doi:10.1029/2006GL026232.

  • Holzer, M., , and F. W. Primeau, 2008: The path-density distribution of oceanic surface-to-surface transport. J. Geophys. Res., 113 , C01018. doi:10.1029/2006JC003976.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., , I. G. McKendry, , and D. A. Jaffe, 2003: Springtime trans-pacific atmospheric transport from East Asia: A transit-time probability density function approach. J. Geophys. Res., 108 , 4708. doi:10.1029/2003JD003558.

    • Search Google Scholar
    • Export Citation
  • Larson, V., 1999: The relationship between the transilient matrix and the Green’s function for the advection–diffusion equation. J. Atmos. Sci., 56 , 24472453.

    • Search Google Scholar
    • Export Citation
  • Maiss, M., , and I. Levin, 1994: Global increase of SF6 observed in the atmosphere. Geophys. Res. Lett., 21 , 569572.

  • Morse, P. M., , and H. Feshbach, 1953: Methods of Theoretical Physics. McGraw-Hill, 997 pp.

  • Plumb, R. A., , and J. D. Mahlman, 1987: The zonally averaged transport characteristics of the GFDL general circulation model. J. Atmos. Sci., 44 , 298327.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., , and D. D. McConalogue, 1988: On the meridional structure of long-lived tropospheric constituents. J. Geophys. Res., 93 , 1589715913.

    • Search Google Scholar
    • Export Citation
  • Primeau, F. W., 2005: Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr., 35 , 545564.

    • Search Google Scholar
    • Export Citation
  • Primeau, F. W., , and M. Holzer, 2006: The ocean’s memory of the atmosphere: Residence-time and ventilation-rate distributions of water masses. J. Phys. Oceanogr., 36 , 14391456.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., 1999: Diffusion versus nonlocal models of stratospheric mixing, in theory and practice. J. Atmos. Sci., 56 , 25712584.

  • Stull, R., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci., 41 , 33513367.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1993: Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory. Bound.-Layer Meteor., 62 , 2196.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 20 10
PDF Downloads 3 3 0

The Path Density of Interhemispheric Surface-to-Surface Transport. Part I: Development of the Diagnostic and Illustration with an Analytic Model

View More View Less
  • 1 Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

A new path-density diagnostic for atmospheric surface-to-surface transport is formulated. The path density η gives the joint probability that air whose last surface contact occurred on patch Ωi at time ti will make its next surface contact with patch Ωf after a residence time τ ∈ (τ, τ + ) and that it can be found in d3r during its surface-to-surface journey. The dependence on τ allows the average surface-to-surface flow rate carried by the paths to be computed. A simple algorithm for using passive tracers to determine η is developed. A key advantage of the diagnostic is that it can be computed efficiently without an adjoint model and using only a moderately large number of tracers. The nature of the path density is illustrated with a one-dimensional advection–diffusion model. In Part II of this study, the path density diagnostic is applied to quantify interhemispheric transport through the troposphere and stratosphere.

Corresponding author address: Mark Holzer, Department of Applied Physics and Applied Mathematics, Columbia University, c/o NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. Email: hm2220@columbia.edu

Abstract

A new path-density diagnostic for atmospheric surface-to-surface transport is formulated. The path density η gives the joint probability that air whose last surface contact occurred on patch Ωi at time ti will make its next surface contact with patch Ωf after a residence time τ ∈ (τ, τ + ) and that it can be found in d3r during its surface-to-surface journey. The dependence on τ allows the average surface-to-surface flow rate carried by the paths to be computed. A simple algorithm for using passive tracers to determine η is developed. A key advantage of the diagnostic is that it can be computed efficiently without an adjoint model and using only a moderately large number of tracers. The nature of the path density is illustrated with a one-dimensional advection–diffusion model. In Part II of this study, the path density diagnostic is applied to quantify interhemispheric transport through the troposphere and stratosphere.

Corresponding author address: Mark Holzer, Department of Applied Physics and Applied Mathematics, Columbia University, c/o NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. Email: hm2220@columbia.edu

Save