• Anthes, R. A., , and S. W. Chang, 1978: Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35 , 12401255.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65 , 233240.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88 , 357374.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and W-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128 , 39413961.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., , J. C. Wyngaard, , Y. K. Izumi, , and E. F. Bradley, 1971: Flux-profile relationships in the atmosphere surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , J. F. Price, , W. Zhao, , M. A. Donelan, , and E. J. Walsh, 2007: The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88 , 311317.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., , K. B. Katsaros, , S. D. Smith, , R. J. Anderson, , W. A. Oost, , K. Bumke, , and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The humidity exchange over the sea (HEXOS) results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air-sea interaction. Ocean Engineering Science, B. Le Méhauté and D. M. Hanes, Eds., Vol. 9, The Sea: Ideas and Observations on Progress in the Study of the Seas, John Wiley and Sons, 239–292.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , J. A. Zhang, , J. R. French, , C. McCormick, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64 , 11031115.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • French, J. R., , W. M. Drennan, , J. A. Zhang, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64 , 10891102.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., , and D. Khelif, 1992: Fast-response aircraft temperature sensors. J. Atmos. Oceanic Technol., 9 , 784795.

  • Friehe, C. A., and Coauthors, 1991: Air-sea fluxes and surface turbulence around a sea surface temperature front. J. Geophys. Res., 96 , 85938609.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1986: Observations of boundary layer structure made during the 1981 KONTUR experiment. Quart. J. Roy. Meteor. Soc., 112 , 825841.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., , and D. S. Shea, 1973: The hurricane’s inner core region. Part II: Thermal stability and dynamics characteristics. J. Atmos. Sci., 30 , 15651576.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1988: Nondimensional wind and temperature profiles in the atmospheric surface layer: A reevaluation. Bound.-Layer Meteor., 42 , 5578.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1990: Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci., 47 , 19491972.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58 , 24692484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63 , 21692192.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58 , 24852501.

    • Search Google Scholar
    • Export Citation
  • Khelif, D., , S. P. Burns, , and C. A. Friehe, 1999: Improved wind measurements on research aircraft. J. Atmos. Oceanic Technol., 16 , 860875.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1970: Airplane measurements of planetary boundary layer structure. J. Appl. Meteor., 9 , 874884.

  • Monin, A. S., , and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 151 , 163187.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., , S. Businger, , F. Marks, , P. Dodge, , and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62 , 26622673.

    • Search Google Scholar
    • Export Citation
  • Moss, M. S., 1978: Low-level turbulence structure in the vicinity of a hurricane. Mon. Wea. Rev., 106 , 841849.

  • Moss, M. S., , and F. J. Merceret, 1976: A note on several low-layer features of Hurricane Eloise (1975). Mon. Wea. Rev., 104 , 967971.

  • Moss, M. S., , and F. J. Merceret, 1977: A comparison of velocity spectra from hot film anemometer and gust-probe measurements. J. Appl. Meteor., 16 , 319320.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1985: Aircraft observations of the Ekman layer during the Joint Air-Sea Interaction Experiment. Quart. J. Roy. Meteor. Soc., 111 , 391426.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., , and C. J. Readings, 1979: Aircraft observations of the structure of the lower boundary layer over the sea. Quart. J. Roy. Meteor. Soc., 105 , 785802.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., , H. Tennekes, , D. H. Lenschow, , and J. C. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11 , 355361.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118 , 891917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118 , 918938.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1968: The surface layer of a hurricane. Tellus, 20 , 473484.

  • Smith, R. K., , M. T. Montgomery, , and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134 , 551561.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10 , 709726.

  • Sorbjan, Z., 1986: On the similarity in the atmospheric boundary layer. Bound.-Layer Meteor., 34 , 377397.

  • Sreenivasan, K. R., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7 , 27782784.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Kluwer Academic, 670 pp.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., , and A-S. Smedman, 1993: The vertical structure of the coastal marine atmospheric boundary layer. J. Geophys. Res., 98 , 48094826.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , P. G. Black, , J. L. Franklin, , M. Goodberlet, , J. Carswell, , and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135 , 30703085.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , and J. Winslow, 1998: Intense sub-kilometer boundary layer rolls in Hurricane Fran. Science, 280 , 555557.

  • Wyngaard, J. C., , and O. R. Coté, 1971: Budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28 , 11711182.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , P. G. Black, , J. R. French, , and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35 , L14813. doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 18
PDF Downloads 110 110 15

Turbulence Structure of the Hurricane Boundary Layer between the Outer Rainbands

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida
  • | 2 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 3 NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida, and Science Applications International Corporation at Naval Research Laboratory, Monterey, California
  • | 4 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

As part of the Coupled Boundary Layers Air–Sea Transfer (CBLAST)-Hurricane program, flights were conducted to directly measure turbulent fluxes and turbulence properties in the high-wind boundary layer of hurricanes between the outer rainbands. For the first time, vertical profiles of normalized momentum fluxes, sensible heat and humidity fluxes, and variances of three-dimensional wind velocities and specific humidity are presented for the hurricane boundary layer with surface wind speeds ranging from 20 to 30 m s−1. The turbulent kinetic energy budget is estimated, indicating that the shear production and dissipation are the major source and sink terms, respectively. The imbalance in the turbulent kinetic energy budget indicates that the unmeasured terms, such as horizontal advection, may be important in hurricane boundary layer structure and dynamics. Finally, the thermodynamic boundary layer height, estimated based on the virtual potential temperature profiles, is roughly half of the boundary layer height estimated from the momentum flux profiles. The latter height where momentum and humidity fluxes tend to vanish is close to that of the inflow layer and also of the maximum in the tangential velocity profiles.

Corresponding author address: Jun Zhang, NOAA/AOML/Hurricane Research Division, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: jun.zhang@noaa.gov

Abstract

As part of the Coupled Boundary Layers Air–Sea Transfer (CBLAST)-Hurricane program, flights were conducted to directly measure turbulent fluxes and turbulence properties in the high-wind boundary layer of hurricanes between the outer rainbands. For the first time, vertical profiles of normalized momentum fluxes, sensible heat and humidity fluxes, and variances of three-dimensional wind velocities and specific humidity are presented for the hurricane boundary layer with surface wind speeds ranging from 20 to 30 m s−1. The turbulent kinetic energy budget is estimated, indicating that the shear production and dissipation are the major source and sink terms, respectively. The imbalance in the turbulent kinetic energy budget indicates that the unmeasured terms, such as horizontal advection, may be important in hurricane boundary layer structure and dynamics. Finally, the thermodynamic boundary layer height, estimated based on the virtual potential temperature profiles, is roughly half of the boundary layer height estimated from the momentum flux profiles. The latter height where momentum and humidity fluxes tend to vanish is close to that of the inflow layer and also of the maximum in the tangential velocity profiles.

Corresponding author address: Jun Zhang, NOAA/AOML/Hurricane Research Division, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: jun.zhang@noaa.gov

Save