• Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224232.

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17 , 24932525.

  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Austin, J. M., 1948: A note on cumulus growth in a nonsaturated environment. J. Meteor., 5 , 103107.

  • Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. J. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134 , 13371351. doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., , A. H. Sobel, , and Y. Kushnir, 2006: AGCM precipitation biases in the tropical Atlantic. J. Climate, 19 , 935958.

  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 , 820829.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Bourlioux, A., , and A. J. Majda, 2002: Elementary models with probability distribution function intermittency for passive scalars with a mean gradient. Phys. Fluids, 14 , 881897. doi:10.1063/1.1430736.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 2007: Challenges in numerical modeling of tropical circulations. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 302–330.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and A. H. Sobel, 2002: A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15 , 29072920.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17 , 15171528.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. S. Bretherton, 1997: A test of the strict quasi-equilibrium theory on long space and time scales. J. Atmos. Sci., 54 , 624638.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , M. Miller, , and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., , R. W. Spencer, , and W. D. Braswell, 2000: MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Oceanic Technol., 17 , 11531170.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., , and G. C. Craig, 2006: Fluctuations in an equilibrium convective ensemble. Part II: Numerical experiments. J. Atmos. Sci., 63 , 20052015.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., , and B. G. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63 , 19962004.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19 , 46054630.

  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J-Y. Grandpeix, , J-M. Piriou, , J-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130 , 30553079.

    • Search Google Scholar
    • Export Citation
  • Dickman, R., , A. Vespignani, , and S. Zapperi, 1998: Self-organized criticality as an absorbing-state phase transition. Phys. Rev. E, 57 , 50955105.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Emanuel, K. A., 1993: The effect of convective response time on WISHE modes. J. Atmos. Sci., 50 , 17631776.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , and C. Braun, 2003: Tropical rainfall and boundary layer moist entropy. J. Climate, 16 , 18071820.

  • Gentemann, C., , C. Donlon, , A. Stuart-Menteth, , and F. Wentz, 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30 , 1140. doi:10.1029/2002GL016291.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C., , F. Wentz, , C. Mears, , and D. Smith, 2004: In-situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109 , C04021. doi:10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., , U. Schumann, , M. Helten, , H. Smit, , and A. Marenco, 1999: A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements. Ann. Geophys., 17 , 12181226.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., , and E. M. Rasmusson, 1983: The 1982–83 climate anomaly in the equatorial Pacific. Nature, 306 , 229234.

  • Gollub, J. P., , J. Clarke, , M. Gharib, , B. Lane, , and O. N. Mesquita, 1991: Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett., 67 , 35073510. doi:10.1103/PhysRevLett.67.3507.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., , and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238 , 657659.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , and P. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Hilburn, K. A., , and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47 , 778794.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64 , 14671487.

  • Holloway, C. E., , and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66 , 16651683.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , and R. T. Pierrehumbert, 2001: The advection–diffusion problem for stratospheric flow. Part I: Concentration probability distribution function. J. Atmos. Sci., 58 , 14931510.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., , and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W-B., , and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27 , 36913694.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W-B., , and J. D. Neelin, 2003: Toward stochastic moist convective parameterization in general circulation models. Geophys. Res. Lett., 30 , 1162. doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and P. R. Kramer, 1999: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep., 314 , 237574.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14 , 20152034.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , J. Smagorinsky, , and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93 , 769798.

    • Search Google Scholar
    • Export Citation
  • Manna, S. S., 1991: Two-state model of self-organized criticality. J. Phys., 24A , L363L369.

  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., , and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131 , 15391565. doi:10.1256/qj.04.94.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21 , 59045924.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modelling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Neelin, J. D., , C. Chou, , and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30 , 2275. doi:10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , J. W-B. Lin, , K. Hales, , and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc., 366A , 25812604.

    • Search Google Scholar
    • Export Citation
  • Pan, D-M., , and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124 , 949981.

  • Parsons, D. B., , J-L. Redelsperger, , and K. Yoneyama, 2000: The evolution of the tropical western Pacific atmosphere–ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126 , 517548.

    • Search Google Scholar
    • Export Citation
  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nature Phys., 2 , 393396. doi:10.1038/nphys314.

  • Peters, O., , J. D. Neelin, , and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., in press.

  • Pierrehumbert, R. T., 2000: Lattice models of advection–diffusion. Chaos, 10 , 6174. doi:10.1063/1.166476.

  • Plant, R. S., , and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65 , 87105.

    • Search Google Scholar
    • Export Citation
  • Pumir, A., , B. I. Shraiman, , and E. D. Siggia, 1991: Exponential tails and random advection. Phys. Rev. Lett., 66 , 29842987. doi:10.1103/PhysRevLett.66.2984.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1977: Sea surface temperature and local weather. Mon. Wea. Rev., 105 , 540544.

  • Randall, D. A., , and D. M. Pan, 1993: Implementation of the Arakawa–Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 137–144.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126 , 889898.

  • Raymond, D. J., , C. Lopez-Carrillo, , and L. L. Cavazos, 1998: Case studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124 , 20052034.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., , D. B. Parsons, , and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59 , 24382457.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127 , 29772991.

  • Shraiman, B. I., , and E. D. Siggia, 1994: Lagrangian path integrals and fluctuations in random flow. Phys. Rev. E, 49 , 29122927. doi:10.1103/PhysRevE.49.2912.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , S. E. Yuter, , C. S. Bretherton, , and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132 , 422444.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , and J. R. Christy, 1992: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part II: A tropospheric retrieval and trends during 1979–90. J. Climate, 5 , 858866.

    • Search Google Scholar
    • Export Citation
  • Tang, C., , and P. Bak, 1988: Critical exponents and scaling relations for self-organized critical phenomena. Phys. Rev. Lett., 60 , 23472350. doi:10.1103/PhysRevLett.60.2347.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. Waliser, , E. Fetzer, , B. Lambrigtsen, , Y. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63 , 24622485.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58 , 529545.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., , and G. C. Craig, 1998: Time scales of adjustment to radiative–convective equilibrium in the tropical atmosphere. Quart. J. Roy. Meteor. Soc., 124 , 26932713.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., , and J. Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113 , D18101. doi:10.1029/2007JD009284.

    • Search Google Scholar
    • Export Citation
  • Tost, H., , P. Jöckel, , and J. Lelieveld, 2006: Influence of different convection parameterisations in a GCM. Atmos. Chem. Phys., 6 , 54755493.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. G. Olsen, 1988: An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium-Range Weather Forecasts. Bull. Amer. Meteor. Soc., 69 , 10471057.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalysis. Climate Dyn., 14 , 213231.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , D. P. Stepaniak, , and J. M. Caron, 2002: Accuracy of atmospheric energy budgets from analyses. J. Climate, 15 , 33433360.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , A. Dai, , R. M. Rasmussen, , and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 , 12051217.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 38 , 554571.

    • Search Google Scholar
    • Export Citation
  • Wei, D., , A. Blyth, , and D. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55 , 33813391.

  • Wentz, F. J., , and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55 , 16131627.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., , and L. J. Donner, 2007: The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Climate, 20 , 5369.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., , and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117 , 14711479.

  • Xu, K-M., , and D. A. Randall, 1998: Influence of large-scale advective cooling and moistening effects on the quasi-equilibrium behavior of explicitly simulated cumulus ensembles. J. Atmos. Sci., 55 , 896909.

    • Search Google Scholar
    • Export Citation
  • Yano, J-I., , W. W. Grabowski, , G. L. Roff, , and B. E. Mapes, 2000: Asymptotic approaches to convective quasi-equilibrium. Quart. J. Roy. Meteor. Soc., 126 , 18611887.

    • Search Google Scholar
    • Export Citation
  • Yano, J-I., , K. Fraedrich, , and R. Blender, 2001: Tropical convective variability as 1/f noise. J. Climate, 14 , 36083616.

  • Yeomans, J., 1992: Statistical Mechanics of Phase Transitions. Oxford University Press, 153 pp.

  • Yoneyama, K., , and T. Fujitani, 1995: The behavior of dry westerly air associated with convection observed during the TOGA-COARE R/V Natushima cruise. J. Meteor. Soc. Japan, 73 , 291304.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., , C. Chou, , and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55 , 13541372.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33 , L06709. doi:10.1029/2005GL025229.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 168 31
PDF Downloads 119 119 21

The Transition to Strong Convection

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

Recent work has shown that observations of tropical precipitation conform to properties associated with critical phenomena in other systems. Here some of these universal properties are used to probe the physics of tropical convection empirically, providing potential tests for models and parameterizations. The power-law pickup of ensemble average precipitation as a function of column water vapor w occurs above a critical value wc whose temperature dependence is determined for layer-integrated tropospheric temperature or saturation value. This dependence differs from the simplest expectations based on column saturation. Rescaling w by wc permits a collapse of precipitation-related statistics to similar functional dependence for all temperatures. The sharp precipitation variance peak at wc, obtained without detailed vertical structure information, appears consistent with arguments that onset requires a deep moist layer. Sea surface temperature (SST) is found not to have a significant effect on the precipitation pickup. The effect of SST on the climatological precipitation occurs via the frequency of occurrence of w values as the system spends a larger fraction of time near criticality over regions of warm SST. Near and above criticality, where most precipitation occurs, the w distribution is highly constrained by the interaction with convection, with a characteristic sharp drop at criticality. For precipitating points, the distribution has a Gaussian core with an approximately exponential tail akin to forced advection–diffusion problems. The long tail above wc, implying relatively frequent strong events, remains similar through the range of tropospheric temperature and SST spanning tropical large-scale conditions. A simple empirical closure illustrates time decay properties.

Corresponding author address: J. David Neelin, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095–1565. Email: neelin@atmos.ucla.edu

Abstract

Recent work has shown that observations of tropical precipitation conform to properties associated with critical phenomena in other systems. Here some of these universal properties are used to probe the physics of tropical convection empirically, providing potential tests for models and parameterizations. The power-law pickup of ensemble average precipitation as a function of column water vapor w occurs above a critical value wc whose temperature dependence is determined for layer-integrated tropospheric temperature or saturation value. This dependence differs from the simplest expectations based on column saturation. Rescaling w by wc permits a collapse of precipitation-related statistics to similar functional dependence for all temperatures. The sharp precipitation variance peak at wc, obtained without detailed vertical structure information, appears consistent with arguments that onset requires a deep moist layer. Sea surface temperature (SST) is found not to have a significant effect on the precipitation pickup. The effect of SST on the climatological precipitation occurs via the frequency of occurrence of w values as the system spends a larger fraction of time near criticality over regions of warm SST. Near and above criticality, where most precipitation occurs, the w distribution is highly constrained by the interaction with convection, with a characteristic sharp drop at criticality. For precipitating points, the distribution has a Gaussian core with an approximately exponential tail akin to forced advection–diffusion problems. The long tail above wc, implying relatively frequent strong events, remains similar through the range of tropospheric temperature and SST spanning tropical large-scale conditions. A simple empirical closure illustrates time decay properties.

Corresponding author address: J. David Neelin, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095–1565. Email: neelin@atmos.ucla.edu

Save