• Alexeev, V. A., , P. L. Langen, , and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24 , 655666.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19 , 35183543.

  • Boer, G. J., 1995: Some dynamical consequences of greenhouse gas warming. Atmos.–Ocean, 33 , 731751.

  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4 , 469485.

  • Caballero, R., , and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32 , L02705. doi:10.1029/2004GL021581.

    • Search Google Scholar
    • Export Citation
  • Cai, M., 2005: Dynamical amplification of polar warming. Geophys. Res. Lett., 32 , L22710. doi:10.1029/2005GL024481.

  • Dong, B., , and P. J. Valdes, 2000: Climates at the last glacial maximum: Influence of model horizontal resolution. J. Climate, 13 , 15541573.

    • Search Google Scholar
    • Export Citation
  • Fischer-Bruns, I., , H. von Storch, , J. F. González-Rouco, , and E. Zorita, 2005: Modelling the variability of midlatitude storm activity on decadal to century time scales. Climate Dyn., 25 , 461476. doi:10.1007/s00382-005-0036-1.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16 , 28022805.

  • Geng, Q., , and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—Study with a high-resolution AGCM. J. Climate, 16 , 22622274.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed. 2000: Glossary of Meteorology. 2nd ed. American Meteorological Society, 855 pp.

  • Hall, N. M. J., , B. J. Hoskins, , P. J. Valdes, , and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120 , 12091230.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. Linden, , X. Dai, , K. Maskell, , and C. A. Johnson, Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1989: A diagnostic formulation for wave–mean flow interactions and Lagrangian-mean circulation with a hybrid vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan, 67 , 293312.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1990: Lagrangian-mean circulation and wave–mean flow interactions of Eady’s baroclinic instability waves. J. Meteor. Soc. Japan, 68 , 347356.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 2001: Atmospheric energy cycle viewed from wave–mean flow interaction and Lagrangian mean circulation. J. Atmos. Sci., 58 , 30363052.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kodama, C., , T. Iwasaki, , K. Shibata, , and S. Yukimoto, 2007: Changes in the stratospheric mean meridional circulation due to increased CO2: Radiation- and sea surface temperature-induced effects. J. Geophys. Res., 112 , D16103. doi:10.1029/2006JD008219.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37 , 16481654.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112 , D10119. doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lunkeit, F., , M. Ponater, , R. Sausen, , M. Sogalla, , U. Ulbrich, , and M. Windelband, 1996: Cyclonic activity in a warmer climate. Beitr. Phys. Atmos., 69 , 393407.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , M. P. Clark, , and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14 , 27632768.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , T. Sampe, , A. Goto, , W. Ohfuchi, , and S-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35 , L15709. doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , and B. J. Hoskins, 2000a: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1 , 101107. doi:10.1006/asle.2000.0022.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , and B. J. Hoskins, 2000b: A standard test for AGCMs including their physical parametrizations: II: Results for the Met Office model. Atmos. Sci. Lett., 1 , 108114. doi:10.1006/asle.2000.0024.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., , H. Yoshimura, , M. Ohizumi, , M. Hosaka, , and M. Sugi, 1999: A simulation of troposphere, stratosphere and mesosphere with an MRI/JMA98 GCM. Pap. Meteor. Geophys., 50 , 1553.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. B. Averyt, , M. Tignor, , and H. L. Miller, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Tanaka, D., , T. Iwasaki, , S. Uno, , M. Ujiie, , and K. Miyazaki, 2004: Eliassen–Palm flux diagnosis based on isentropic representation. J. Atmos. Sci., 61 , 23702383.

    • Search Google Scholar
    • Export Citation
  • Uno, S., , and T. Iwasaki, 2006: A cascade-type global energy conversion diagram based on wave–mean flow interactions. J. Atmos. Sci., 63 , 32773295.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 , L18701. doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute coupled GCM version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84 , 333363.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 5
PDF Downloads 20 20 4

Influence of the SST Rise on Baroclinic Instability Wave Activity under an Aquaplanet Condition

View More View Less
  • 1 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
© Get Permissions
Restricted access

Abstract

The influence of the sea surface temperature (SST) rise on extratropical baroclinic instability wave activity is investigated using an aquaplanet general circulation model (GCM). Two types of runs were performed: the High+3 run, in which the SST is increased by 3 K only at high latitudes, and the All+3 run, in which the SST is increased uniformly by 3 K all over the globe. These SST rises were intended to reproduce essential changes of the surface air temperature due to global warming. Wave activity changes are analyzed and discussed from the viewpoint of the energetics.

In the High+3 run, midlatitude meridional temperature gradient is decreased in the lower troposphere and the wave energy is suppressed in the extratropics. In the All+3 run, although the large tropical latent heat release greatly enhances the midlatitude meridional temperature gradient in the upper troposphere, global mean wave energy does not change significantly. These results suggest that the low-level baroclinicity is much more important for baroclinic instability wave activity than upper-level baroclinicity. A poleward shift of wave energy, seen in global warming simulations, is evident in the All+3 run. Wave energy generation analysis suggests that the poleward shift of wave activity may be caused by the enhanced and poleward-shifted baroclinicity in the higher latitudes and the increased static stability in the lower latitudes. Poleward expansion of the high-baroclinicity region is still an open question.

* Current affiliation: Japan Agency for Marine-Earth Science and Technology (JAMSTEC).

Corresponding author address: Chihiro Kodama, JAMSTEC, 3173-25, Showa-Machi, Kanazawa-Ku, Yokahama, Kanagawa, 236-0001, Japan. Email: kodamac@jamstec.go.jp

Abstract

The influence of the sea surface temperature (SST) rise on extratropical baroclinic instability wave activity is investigated using an aquaplanet general circulation model (GCM). Two types of runs were performed: the High+3 run, in which the SST is increased by 3 K only at high latitudes, and the All+3 run, in which the SST is increased uniformly by 3 K all over the globe. These SST rises were intended to reproduce essential changes of the surface air temperature due to global warming. Wave activity changes are analyzed and discussed from the viewpoint of the energetics.

In the High+3 run, midlatitude meridional temperature gradient is decreased in the lower troposphere and the wave energy is suppressed in the extratropics. In the All+3 run, although the large tropical latent heat release greatly enhances the midlatitude meridional temperature gradient in the upper troposphere, global mean wave energy does not change significantly. These results suggest that the low-level baroclinicity is much more important for baroclinic instability wave activity than upper-level baroclinicity. A poleward shift of wave energy, seen in global warming simulations, is evident in the All+3 run. Wave energy generation analysis suggests that the poleward shift of wave activity may be caused by the enhanced and poleward-shifted baroclinicity in the higher latitudes and the increased static stability in the lower latitudes. Poleward expansion of the high-baroclinicity region is still an open question.

* Current affiliation: Japan Agency for Marine-Earth Science and Technology (JAMSTEC).

Corresponding author address: Chihiro Kodama, JAMSTEC, 3173-25, Showa-Machi, Kanazawa-Ku, Yokahama, Kanagawa, 236-0001, Japan. Email: kodamac@jamstec.go.jp

Save