• Ackermann, J., 1998: The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Oceanic Technol., 15 , 10431050.

    • Search Google Scholar
    • Export Citation
  • Ahmad, S. P., , O. Torres, , P. K. Bhartia, , G. Leptoukh, , and S. Kempler, 2006: Aerosol index from TOMS and OMI measurements. Preprints, 14th Joint Conf. on the Applications of Air Pollution Meteorology, Atlanta, GA, Amer. Meteor. Soc., P1.6. [Available online at http://ams.confex.com/ams/pdfpapers/104496.pdf].

    • Search Google Scholar
    • Export Citation
  • Bréon, F-M., , and P. Goloub, 1998: Cloud droplet effective radius from spaceborne polarization measurements. Geophys. Res. Lett., 25 , 18791882.

    • Search Google Scholar
    • Export Citation
  • Bréon, F-M., , D. Tanré, , P. Leconte, , and M. Herman, 1995: Polarized reflectance of bare soils and vegetation: Measurements and models. IEEE Trans. Geosci. Remote Sens., 33 , 487499.

    • Search Google Scholar
    • Export Citation
  • Bréon, F-M., , D. Tanré, , and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295 , 834838.

  • Cattani, E., , M. J. Costa, , F. Torricella, , V. Levizzani, , and A. M. Silva, 2006: Influence of aerosol particles from biomass burning on cloud microphysical properties and radiative forcing. Atmos. Res., 82 , 310327. doi:10.1016/j.atmosres.2005.10.010.

    • Search Google Scholar
    • Export Citation
  • Cattrall, C., , J. Reagan, , K. Thome, , and O. Dubovik, 2005: Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. J. Geophys. Res., 110 , D10S11. doi:10.1029/2004JD005124.

    • Search Google Scholar
    • Export Citation
  • Chowdhary, J., , B. Cairns, , and L. Travis, 2002: Case studies of aerosol retrievals from multiangle, multispectral photopolarimetric remote sensing data. J. Atmos. Sci., 59 , 383397.

    • Search Google Scholar
    • Export Citation
  • De Graaf, M., , P. Stammes, , and E. A. A. Aben, 2007: Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY. J. Geophys. Res., 112 , D02206. doi:10.1029/2006JD007249.

    • Search Google Scholar
    • Export Citation
  • De Haan, J. F., , P. B. Bosma, , and J. W. Hovenier, 1987: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183 , 371391.

    • Search Google Scholar
    • Export Citation
  • Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions. Elsevier, 318 pp.

  • Deuzé, J-L., , M. Herman, , and R. Santer, 1989: Fourier series expansion of the transfer equation in the atmosphere–ocean system. J. Quant. Spectrosc. Radiat. Transfer, 41 , 483494.

    • Search Google Scholar
    • Export Citation
  • Deuzé, J-L., and Coauthors, 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res., 106 , 49134926.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., , B. Holben, , T. F. Eck, , A. Smirnov, , Y. J. Kaufman, , M. D. King, , D. Tanré, , and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59 , 590608.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., , J. L. Deuzé, , M. Herman, , and Y. Fouquart, 1994: Analysis of the POLDER polarization measurements performed over cloud covers. IEEE Trans. Geosci. Remote Sens., 32 , 7888.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., , M. Herman, , H. Chepfer, , J. Riedi, , G. Brogniez, , P. Couvert, , and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105 , 1474714760.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., , and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16 , 527610.

  • Herman, J. R., , P. Bhartia, , O. Torres, , C. Hsu, , C. Seftor, , and E. Celarier, 1997: Global distribution of UV-absorbing aerosol from Nimbus-7/TOMS data. J. Geophys. Res., 102 , 1691116922.

    • Search Google Scholar
    • Export Citation
  • Herman, M., , J-L. Deuzé, , A. Marchand, , B. Roger, , and P. Lallart, 2005: Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model. J. Geophys. Res., 110 , D10S02. doi:10.1029/2004JD004798.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., , S. C. Tsay, , M. D. King, , and J. R. Herman, 2004: Aerosol retrievals over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42 , 557569.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , D. Tanré, , L. Remer, , E. Vermote, , A. Chu, , and B. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res., 102 , 1705117067.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and Coauthors, 2005: A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens., 43 , 28862897.

    • Search Google Scholar
    • Export Citation
  • Kim, S-W., , S. Berthier, , J-C. Raut, , P. Chazette, , F. Dulac, , and S-C. Yoon, 2008: Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys., 8 , 37053720.

    • Search Google Scholar
    • Export Citation
  • Lafrance, B., 1997: Modélisation simplifiée de la lumière polarisée émergeant de l’atmosphère: Correction de l’impact des aérosols stratosphériques sur les mesures de POLDER. Ph.D. thesis, Université des Sciences et Techniques de Lille, 114 pp.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , R. A. Frey, , B. A. Baum, , and H. Zhang, 2006: Cloud top properties and cloud phase algorithm theoretical basis document, version 7, 55 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/MOD06CT:MYD06CT_ATBD_C005.pdf].

    • Search Google Scholar
    • Export Citation
  • Parol, F., , J. C. Buriez, , C. Vanbauce, , P. Couvert, , G. Sèze, , P. Goloub, , and S. Cheinet, 1999: First results of the POLDER “Earth Radiation Budget and Clouds” operational algorithm. IEEE Trans. Geosci. Remote Sens., 37 , 15971612.

    • Search Google Scholar
    • Export Citation
  • Parol, F., and Coauthors, 2004: Capabilities of Multi-Angle Polarization Cloud measurements from satellite: POLDER results. Adv. Space Res., 33 , 10801088.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riédi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-TRAIN: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Tanré, D., , Y. J. Kaufman, , and S. Mattoo, 1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res., 102 , 1697116988.

    • Search Google Scholar
    • Export Citation
  • Tanré, D., , F-M. Bréon, , J-L. Deuzé, , M. Herman, , P. Goloub, , F. Nadal, , and A. Marchand, 2001: Global observation of anthropogenic aerosols from satellite. Geophys. Res. Lett., 28 , 45554558.

    • Search Google Scholar
    • Export Citation
  • Vanbauce, C., , B. Cadet, , and R. T. Marchand, 2003: Comparison of POLDER apparent and corrected oxygen pressure to ARM/MMCR cloud boundary pressures. Geophys. Res. Lett., 30 , 1212. doi:10.1029/2002GL016449.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M., , S. Young, , D. Winker, , K. Powell, , A. Omar, , Z. Liu, , Y. Hu, , and C. Hostetler, 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), 16–30, doi:10.1117/12.572024.

    • Search Google Scholar
    • Export Citation
  • Waquet, F., , P. Goloub, , J-L. Deuzé, , J. F. Léon, , F. Auriol, , C. Verwaerde, , J-Y. Balois, , and P. François, 2007: Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method. J. Geophys. Res., 112 , D11214. doi:10.1029/2006JD008029.

    • Search Google Scholar
    • Export Citation
  • Waquet, F., , B. Cairns, , K. Knobelspiesse, , J. Chowdhary, , L. D. Travis, , B. Schmid, , and M. I. Mishchenko, 2009: Polarimetric remote sensing of aerosols over land. J. Geophys. Res., 114 , D01206. doi:10.1029/2008JD010619.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , W. H. Hunt, , and C. A. Hostetler, 2004: Status and performance of the CALIOP lidar. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), 8–15, doi:10.1117/12.571955.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 12
PDF Downloads 34 34 11

Aerosol Remote Sensing over Clouds Using A-Train Observations

View More View Less
  • 1 Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, Villeneuve-d’Ascq, France
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
  • | 3 Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, Villeneuve-d’Ascq, France
© Get Permissions
Restricted access

Abstract

The detection of aerosol above clouds is critical for the estimate of both the aerosol and cloud radiative impacts. In this study, the authors present a new method to retrieve the aerosol properties over clouds that uses the multiangle polarization measurements of the Polarization and Directionality of Earth Reflectances (POLDER)–Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) instrument. The method is illustrated and applied to a case study exploiting the coincident observations from other passive and active sensors of the NASA A-Train satellite constellation. The case study is relative to an elevated biomass burning aerosol layer that originates from southern Africa and is then transported over low-level clouds extending over the Atlantic Ocean. It is shown that the comparison between the cloud-top heights retrieved with the different passive techniques developed for the A-Train sensors can be used to detect the presence of aerosols above clouds. The analysis of the PARASOL observations showed that the aerosols significantly affect the polarized light reflected by the clouds over the 80°–120° scattering angle range and in the rainbow region. A single scattering model permitted the reproduction of the polarization observations and the retrieval of an estimate of the aerosol layer optical thickness of 0.225 at 0.865 μm. The retrieved aerosol optical thicknesses over clouds agree quantitatively with the closest ones retrieved over clear-sky ocean (±0.04 as a maximum departure), demonstrating the value of the method. This innovative technique based solely on passive measurements is expected to provide a better understanding of aerosol properties in regions where significant cloud cover usually prevents the retrieval of aerosol optical thickness. As such, this new retrieval method can provide significant and valuable information about the radiative impact of clouds and aerosols, especially where they can potentially interact strongly with each other.

Corresponding author address: Dr. Fabien Waquet, LOA, UFR de Physique, Bât P5, USTL, Villeneuve-d’Ascq, CEDEX F-59655, France. Email: waquet@loa.univ-lille1.fr

Abstract

The detection of aerosol above clouds is critical for the estimate of both the aerosol and cloud radiative impacts. In this study, the authors present a new method to retrieve the aerosol properties over clouds that uses the multiangle polarization measurements of the Polarization and Directionality of Earth Reflectances (POLDER)–Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) instrument. The method is illustrated and applied to a case study exploiting the coincident observations from other passive and active sensors of the NASA A-Train satellite constellation. The case study is relative to an elevated biomass burning aerosol layer that originates from southern Africa and is then transported over low-level clouds extending over the Atlantic Ocean. It is shown that the comparison between the cloud-top heights retrieved with the different passive techniques developed for the A-Train sensors can be used to detect the presence of aerosols above clouds. The analysis of the PARASOL observations showed that the aerosols significantly affect the polarized light reflected by the clouds over the 80°–120° scattering angle range and in the rainbow region. A single scattering model permitted the reproduction of the polarization observations and the retrieval of an estimate of the aerosol layer optical thickness of 0.225 at 0.865 μm. The retrieved aerosol optical thicknesses over clouds agree quantitatively with the closest ones retrieved over clear-sky ocean (±0.04 as a maximum departure), demonstrating the value of the method. This innovative technique based solely on passive measurements is expected to provide a better understanding of aerosol properties in regions where significant cloud cover usually prevents the retrieval of aerosol optical thickness. As such, this new retrieval method can provide significant and valuable information about the radiative impact of clouds and aerosols, especially where they can potentially interact strongly with each other.

Corresponding author address: Dr. Fabien Waquet, LOA, UFR de Physique, Bât P5, USTL, Villeneuve-d’Ascq, CEDEX F-59655, France. Email: waquet@loa.univ-lille1.fr

Save