Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics

Edward R. Mansell NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
,
Conrad L. Ziegler NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Conrad L. Ziegler in
Current site
Google Scholar
PubMed
Close
, and
Eric C. Bruning Cooperative Institute for Climate Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Eric C. Bruning in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Electrification and lightning are simulated for a small continental multicell storm. The results are consistent with observations and thus provide additional understanding of the charging processes and evolution of this storm. The first six observed lightning flashes were all negative cloud-to-ground (CG) flashes, after which intracloud (IC) flashes also occurred between middle and upper levels of the storm. The model simulation reproduces the basic evolution of lightning from low and middle levels to upper levels. The observed lightning indicated an initial charge structure of at least an inverted dipole (negative charge above positive). The simulations show that noninductive charge separation higher in the storm can enhance the main negative charge sufficiently to produce negative CG flashes before upper-level IC flashes commence. The result is a “bottom-heavy” tripole charge structure with midlevel negative charge and a lower positive charge region that is more significant than the upper positive region, in contrast to the traditional tripole structure that has a less significant lower positive charge region. Additionally, the occurrence of cloud-to-ground lightning is not necessarily a result of excess net charge carried by the storm, but it is primarily caused by the local potential imbalance between the lowest charge regions.

The two-moment microphysics scheme used for this study predicted mass mixing ratio and number concentration of cloud droplets, rain, ice crystals, snow, and graupel. Bulk particle density of graupel was also predicted, which allows a single category to represent a greater range of particle characteristics. (An additional hail category is available but was not needed for the present study.) The prediction of hydrometeor number concentration is particularly critical for charge separation at higher temperatures (−5° < T < −20°C) in the mixed phase region, where ice crystals are produced by rime fracturing (Hallett–Mossop process) and by splintering of freezing drops. Cloud droplet concentration prediction also affected the rates of inductive charge separation between graupel and droplets.

Corresponding author address: Edward Mansell, 120 D. L. Boren Blvd., Norman, OK 73072. Email: ted.mansell@noaa.gov

Abstract

Electrification and lightning are simulated for a small continental multicell storm. The results are consistent with observations and thus provide additional understanding of the charging processes and evolution of this storm. The first six observed lightning flashes were all negative cloud-to-ground (CG) flashes, after which intracloud (IC) flashes also occurred between middle and upper levels of the storm. The model simulation reproduces the basic evolution of lightning from low and middle levels to upper levels. The observed lightning indicated an initial charge structure of at least an inverted dipole (negative charge above positive). The simulations show that noninductive charge separation higher in the storm can enhance the main negative charge sufficiently to produce negative CG flashes before upper-level IC flashes commence. The result is a “bottom-heavy” tripole charge structure with midlevel negative charge and a lower positive charge region that is more significant than the upper positive region, in contrast to the traditional tripole structure that has a less significant lower positive charge region. Additionally, the occurrence of cloud-to-ground lightning is not necessarily a result of excess net charge carried by the storm, but it is primarily caused by the local potential imbalance between the lowest charge regions.

The two-moment microphysics scheme used for this study predicted mass mixing ratio and number concentration of cloud droplets, rain, ice crystals, snow, and graupel. Bulk particle density of graupel was also predicted, which allows a single category to represent a greater range of particle characteristics. (An additional hail category is available but was not needed for the present study.) The prediction of hydrometeor number concentration is particularly critical for charge separation at higher temperatures (−5° < T < −20°C) in the mixed phase region, where ice crystals are produced by rime fracturing (Hallett–Mossop process) and by splintering of freezing drops. Cloud droplet concentration prediction also affected the rates of inductive charge separation between graupel and droplets.

Corresponding author address: Edward Mansell, 120 D. L. Boren Blvd., Norman, OK 73072. Email: ted.mansell@noaa.gov

Save
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection. Part II: Single initial distributions. J. Atmos. Sci., 24 , 18251831.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, B66 , 688694.

  • Brooks, I. M., C. P. R. Saunders, R. P. Mitzeva, and S. L. Peck, 1997: The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos. Res., 43 , 277295.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135 , 25252544.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133 , 19781997.

    • Search Google Scholar
    • Export Citation
  • Chisnell, R. F., and J. Latham, 1974: A stochastic model of ice particle multiplication by drop splintering. Quart. J. Roy. Meteor. Soc., 100 , 296308.

    • Search Google Scholar
    • Export Citation
  • Coleman, L. M., T. C. Marshall, M. Stolzenburg, T. Hamlin, P. R. Krehbiel, W. Rison, and R. J. Thomas, 2003: Effects of charge and electrostatic potential on lightning propagation. J. Geophys. Res., 108 , 4298. doi:10.1029/2002JD002718.

    • Search Google Scholar
    • Export Citation
  • Coleman, L. M., M. Stolzenburg, T. C. Marshall, and M. Stanley, 2008: Horizontal lightning propagation, preliminary breakdown, and electric potential in New Mexico thunderstorms. J. Geophys. Res., 113 , D09208. doi:10.1029/2007JD009459.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63 , 12311252.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25 , 16581680.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Dwyer, J. R., 2003: A fundamental limit on electric fields in air. Geophys. Res. Lett., 30 , 2055. doi:10.1029/2003GL017781.

  • Farley, R. D., 1987: Numerical modeling of hailstorms and hailstone growth. Part II: The role of low-density riming growth in hail production. J. Climate Appl. Meteor., 26 , 234254.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Ferrier, B. S., W-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52 , 10011033.

    • Search Google Scholar
    • Export Citation
  • Gish, O. H., 1944: Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Electr., 49 , 159168.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6 , 243248.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Helsdon Jr., J. H., and R. D. Farley, 1987: A numerical modeling study of a Montana thunderstorm: 2. Model results versus observations involving electrical aspects. J. Geophys. Res., 92 , 56615675.

    • Search Google Scholar
    • Export Citation
  • Helsdon Jr., J. H., G. Wu, and R. D. Farley, 1992: An intracloud lightning parameterization scheme for a storm electrification model. J. Geophys. Res., 97 , 58655884.

    • Search Google Scholar
    • Export Citation
  • Jiang, G-S., and C-W. Shu, 1996: Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126 , 202228.

  • Kasemir, H. W., 1960: A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65 , 18731878.

  • Kato, T., 1995: A box-Lagrangian rain-drop scheme. J. Meteor. Soc. Japan, 73 , 241245.

  • Klemp, J. B., and R. B. Wilhelmson, 1978a: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35 , 10971110.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978b: The simulations of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Acadamies Press, 90–113.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens, 2008: Upward electrical discharges from thunderstorms. Nature Geosci., 1 , 233237.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1991: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Methods Appl. Mech. Eng., 88 , 1774.

    • Search Google Scholar
    • Export Citation
  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31 , 10401052.

  • MacGorman, D. R., A. A. Few, and T. L. Teer, 1981: Layered lightning activity. J. Geophys. Res., 86 , 99009910.

  • MacGorman, D. R., J. M. Straka, and C. L. Ziegler, 2001: A lightning parameterization for numerical cloud models. J. Appl. Meteor., 40 , 459478.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX The thunderstorm electrification and lightning experiment. Bull. Amer. Meteor. Soc., 89 , 9971013.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107 , 4075. doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110 , D12101. doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100 , 70977103.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., 2002: Physical processes during the development of lightning flashes. C. R. Phys., 3 , 13931409.

  • Mazur, V., and L. H. Ruhnke, 1998: Model of electric charges in thunderstorms and associated lightning. J. Geophys. Res., 103 , 2329923308.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Mitzeva, R., C. Saunders, and B. Tsenova, 2006: Parameterisation of non-inductive charging in thunderstorm regions free of cloud droplets. Atmos. Res., 82 , 102111. doi:10.1016/j.atmosres.2005.12.006.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July CCOPE cloud. J. Meteor. Soc. Japan, 68 , 107128.

    • Search Google Scholar
    • Export Citation
  • Qie, X., T. Zhang, C. Chen, G. Zhang, T. Zhang, and W. Wei, 2005: The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett., 32 , L05814. doi:10.1029/2004GL022162.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1985: A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42 , 22752279.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forcasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Riousset, J. A., V. P. Pasko, P. R. Krehbiel, R. J. Thomas, and W. Rison, 2007: Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations. J. Geophys. Res., 112 , D15203. doi:10.1029/2006JD007621.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103 , 1394913956.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92 , 4566. doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Shu, C-W., 2003: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn., 17 , 107118.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44 , 445466.

    • Search Google Scholar
    • Export Citation
  • Tan, Y., S. Tao, and B. Zhu, 2006: Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys. Res. Lett., 33 , L09809. doi:10.1029/2005GL025523.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl., 43 , 243249.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58 , 1939.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52 , 26752703.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. T. R., 1921: Investigations on lightning discharges and on the electric field of thunderstorms. Philos. Trans. Roy. Soc. London, A221 , 73115.

    • Search Google Scholar
    • Export Citation
  • Wisner, C., H. D. Orville, and C. Meyers, 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29 , 11601181.

  • Xue, M., 2000: High-order monotonic numerical diffusion and smoothing. Mon. Wea. Rev., 128 , 28532864.

  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42 , 14871509.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and D. R. MacGorman, 1994: Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51 , 833851.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., P. S. Ray, and D. R. MacGorman, 1986: Relations of kinematics, microphysics and electrification in an isolated mountain thunderstorm. J. Atmos. Sci., 43 , 20982114.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, and P. S. Ray, 1991: A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96 , 1283312855.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32 , 678693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2444 925 67
PDF Downloads 1948 663 43