Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region

Jung Hyo Chae Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Jung Hyo Chae in
Current site
Google Scholar
PubMed
Close
and
Steven C. Sherwood Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Steven C. Sherwood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The connection between environmental stability and the height of tropical deep convective clouds is analyzed using stereo cloud height data from the Multiangle Imaging Spectroradiometer (MISR), focusing on the seasonal cycle of clouds over the western Pacific Ocean. Three peaks in cloud-top height representing low, mid-topped, and deep convective clouds are found as in previous studies. The optically thickest cloud heights are roughly 2 km higher on the summer side of the equator, where CAPE is higher, than on the winter side. Overall cloud height, however, is about the same on both sides of the equator, but ∼600 m higher in December–February (DJF) than in June–August (JJA). Because of variations in stratospheric upwelling, temperatures near the tropopause exhibit a significant seasonal cycle, mainly above 13 km. Using an ensemble of simulations by the Weather Research and Forecasting (WRF) cloud-resolving model and a simple overshooting parcel calculation, the authors show that the cloud height variation can be explained by that of near-tropopause stability changes, including influence from heights above 14 km, even though the cloud height peaks only near 12 km. This suggests that mixing above cloud top—not typically accounted for in simple models of convection—is important in setting the height of the laminar (anvil) high clouds that result. The MISR data indicate a seasonal variation in peak cloud-top temperature of ∼5 K, despite the recent proposal that cloud-top heights should track a fixed isotherm. That proposal must therefore be applied with caution to any climate-change scenario that may involve significant changes in stratospheric upwelling.

* Current affiliation: Jet Propulsion Laboratory, Pasadena, California.

+ Current affiliation: Climate Change Research Centre, University of New South Wales, Sydney, Australia.

Corresponding author address: Dr. Jung Hyo Chae, Jet Propulsion Laboratory, Pasadena, CA 91109. Email: junghyo.chae@aya.yale.edu

Abstract

The connection between environmental stability and the height of tropical deep convective clouds is analyzed using stereo cloud height data from the Multiangle Imaging Spectroradiometer (MISR), focusing on the seasonal cycle of clouds over the western Pacific Ocean. Three peaks in cloud-top height representing low, mid-topped, and deep convective clouds are found as in previous studies. The optically thickest cloud heights are roughly 2 km higher on the summer side of the equator, where CAPE is higher, than on the winter side. Overall cloud height, however, is about the same on both sides of the equator, but ∼600 m higher in December–February (DJF) than in June–August (JJA). Because of variations in stratospheric upwelling, temperatures near the tropopause exhibit a significant seasonal cycle, mainly above 13 km. Using an ensemble of simulations by the Weather Research and Forecasting (WRF) cloud-resolving model and a simple overshooting parcel calculation, the authors show that the cloud height variation can be explained by that of near-tropopause stability changes, including influence from heights above 14 km, even though the cloud height peaks only near 12 km. This suggests that mixing above cloud top—not typically accounted for in simple models of convection—is important in setting the height of the laminar (anvil) high clouds that result. The MISR data indicate a seasonal variation in peak cloud-top temperature of ∼5 K, despite the recent proposal that cloud-top heights should track a fixed isotherm. That proposal must therefore be applied with caution to any climate-change scenario that may involve significant changes in stratospheric upwelling.

* Current affiliation: Jet Propulsion Laboratory, Pasadena, California.

+ Current affiliation: Climate Change Research Centre, University of New South Wales, Sydney, Australia.

Corresponding author address: Dr. Jung Hyo Chae, Jet Propulsion Laboratory, Pasadena, CA 91109. Email: junghyo.chae@aya.yale.edu

Save
  • Ackerman, T. P., K-N. Liou, F. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107 , 4792. doi:10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75 , 351363.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgeway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Search Google Scholar
    • Export Citation
  • Chae, J. H., and S. C. Sherwood, 2007: Annual temperature cycle of the tropical tropopause: A simple model study. J. Geophys. Res., 112 , D19111. doi:10.1029/2006JD007956.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107 , 4714. doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., S. P. Palm, W. D. Hart, and J. D. Spinhirne, 2006a: Tropopause-level thin cirrus coverage revealed by ICESat/Geoscience Laser Altimeter System. J. Geophys. Res., 111 , D08203. doi:10.1029/2005JD006586.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., S. P. Palm, and J. D. Spinhirne, 2006b: Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS). J. Geophys. Res., 111 , D12215. doi:10.1029/2005JD006705.

    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 1999: MISR level-2 cloud detection and classification algorithm theoretical basis document. JPL Tech. Doc. D-11399, 102 pp.

    • Search Google Scholar
    • Export Citation
  • Diner, D. J., J. C. Beckert, G. W. Bothwell, and J. I. Rodriguez, 2002: Performance of the MISR instrument during its first 20 months in earth orbit. IEEE Trans. Geosci. Remote Sens., 40 (7) 14491466.

    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19 , 5368.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Folkins, I., M. Loewenstein, J. Podolske, S. J. Oltmans, and M. Proffitt, 1999: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res., 104 , (D18). 2209522102.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., P. Bernath, C. Boone, G. Lesins, N. Livesey, A. M. Thompson, K. Walker, and J. C. Witte, 2006: Seasonal cycles of O3, CO, and convective outflow at the tropical tropopause. Geophys. Res. Lett., 33 , L16802. doi:10.1029/2006GL026602.

    • Search Google Scholar
    • Export Citation
  • Fritz, S., and J. S. Winston, 1962: Synoptic use of radiation measurements from satellite TIROS II. Mon. Wea. Rev., 90 , 19.

  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47 , RG1004. doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., A. J. Heymsfield, M. J. McGill, B. A. Ridley, D. G. Baumgardner, T. P. Bui, and C. R. Webster, 2004: Convective generation of cirrus near the tropopause. J. Geophys. Res., 109 , D21203. doi:10.1029/2004JD004952.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29 , 1951. doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res., 98 , 1662316637.

  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Jensen, M. P., and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42 , 12341254.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63 , 34213436.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2004: Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61 , 29192927.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and D. L. Hartmann, 2007: Testing the fixed anvil temperature hypothesis in a cloud-resolving model. J. Climate, 20 , 20512057.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., and D. L. Hartmann, 2008: Vertical structure of tropical oceanic convective clouds and its relation to precipitation. Geophys. Res. Lett., 35 , L03804. doi:10.1029/2007GL032811.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20 , 55105526.

  • Lane, T. P., R. D. Sharman, T. L. Clark, and H-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60 , 12971321.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., M. D. Chou, and W. K. Tao, 1994: An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature. Geophys. Res. Lett., 21 , 11571160.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37 , 24442457.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110 , D23104. doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. Lemone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Marchand, R. T., T. P. Ackerman, and C. Moroney, 2007: An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers. J. Geophys. Res., 112 , D06204. doi:10.1029/2006JD007091.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57 , 18411853.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. R. Doelling, L. Nguyen, W. F. Miller, and V. Chakrapani, 2008: Assessment of the visible channel calibrations of the VIRS on TRMM and MODIS on Aqua and Terra. J. Atmos. Oceanic Technol., 25 , 385400.

    • Search Google Scholar
    • Export Citation
  • Moroney, C., R. Davies, and J-P. Muller, 2002: Operational retrieval of cloud-top heights using MISR data. IEEE Trans. Geosci. Remote Sens., 40 , 15321540.

    • Search Google Scholar
    • Export Citation
  • Muller, J-P., A. Mandanayake, C. Moroney, R. Davies, D. J. Diner, and S. Paradise, 2002: MISR stereoscopic image matchers: Techniques and results. IEEE Trans. Geosci. Remote Sens., 40 , 15471559.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperature. Part II: Model results. J. Atmos. Sci., 63 , 14201431.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. Nedoluha, 2004: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61 , 21332148.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res., 111 , D12312. doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., D. B. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59 , 24382457.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., and S. C. Sherwood, 2006: Modeling the impact of convective entrainment on the tropical tropopause. J. Atmos. Sci., 63 , 10131027.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, and Y. Li, 2008: Resonant response of deep convection to surface hot spots. J. Atmos. Sci., 65 , 276286.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100 , 51735191.

    • Search Google Scholar
    • Export Citation
  • Salby, M., and P. Callaghan, 2004: Control of the tropical tropopause and vertical transport across it. J. Climate, 17 , 965985.

  • Salby, M., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey, 2003: Fluctuations of cloud, humidity, and thermal structure near the tropical tropopause. J. Climate, 16 , 34283446.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127 , 29772991.

  • Sherwood, S. C., 2000: A stratospheric “drain” over the maritime continent. Geophys. Res. Lett., 27 , 677680.

  • Sherwood, S. C., and A. E. Dessler, 2001: A model for transport across the tropical tropopause. J. Atmos. Sci., 58 , 765779.

  • Sherwood, S. C., and A. E. Dessler, 2003: Convective mixing near the tropical tropopause: Insights from seasonal variations. J. Atmos. Sci., 60 , 26742685.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., P. Minnis, and M. McGill, 2004a: Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE. J. Geophys. Res., 109 , D20119. doi:10.1029/2004JD004811.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., J-H. Chae, P. Minnis, and M. McGill, 2004b: Underestimation of deep convective cloud tops by thermal imagery. Geophys. Res. Lett., 31 , L11102. doi:10.1029/2004GL019699.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and C. M. R. Platt, 1978: Comparison of satellite-deduced cloud heights with indications from radiosonde and ground-based laser measurements. J. Appl. Meteor., 17 , 17961802.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. W. J. Thompson, R. W. Portmann, S. J. Oltmans, and A. M. Thompson, 2005: On the distribution and variability of ozone in the tropical upper troposphere: Implications for tropical deep convection and chemical-dynamical coupling. Geophys. Res. Lett., 32 , L23813. doi:10.1029/2005GL024323.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., O. Hirayama, and C. Liu, 2004: Factors responsible for the vertical development of tropical oceanic cumulus convection. Geophys. Res. Lett., 31 , L11109. doi:10.1029/2004GL020225.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1999: Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J. Climate, 12 , 462476.

    • Search Google Scholar
    • Export Citation
  • Webster, C. R., and A. J. Heymsfield, 2003: Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science, 302 , 17421745.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and C. R. Trepte, 1998: Laminar cirrus observed near the tropical tropopause by LITE. Geophys. Res. Lett., 25 , 33513354.

    • Search Google Scholar
    • Export Citation
  • WMO, 1996: Guide to Meteorological Instruments and Methods of Observation. 6th ed. WMO Rep. 8, World Meteorological Organization, 501 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: On the annual cycle in highest, coldest clouds in the tropics. J. Climate, 6 , 19871990.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 659 276 16
PDF Downloads 265 59 3