Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model

Jadwiga H. Richter Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jadwiga H. Richter in
Current site
Google Scholar
PubMed
Close
,
Fabrizio Sassi Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Fabrizio Sassi in
Current site
Google Scholar
PubMed
Close
, and
Rolando R. Garcia Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rolando R. Garcia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Middle atmospheric general circulation models (GCMs) must employ a parameterization for small-scale gravity waves (GWs). Such parameterizations typically make very simple assumptions about gravity wave sources, such as uniform distribution in space and time or an arbitrarily specified GW source function. The authors present a configuration of the Whole Atmosphere Community Climate Model (WACCM) that replaces the arbitrarily specified GW source spectrum with GW source parameterizations. For the nonorographic wave sources, a frontal system and convective GW source parameterization are used. These parameterizations link GW generation to tropospheric quantities calculated by the GCM and provide a model-consistent GW representation. With the new GW source parameterization, a reasonable middle atmospheric circulation can be obtained and the middle atmospheric circulation is better in several respects than that generated by a typical GW source specification. In particular, the interannual NH stratospheric variability is significantly improved as a result of the source-oriented GW parameterization. It is also shown that the addition of a parameterization to estimate mountain stress due to unresolved orography has a large effect on the frequency of stratospheric sudden warmings in the NH stratosphere by changing the propagation of stationary planetary waves into the polar vortex.

* Current affiliation: Naval Research Laboratory, Washington, D.C.

Corresponding author address: Jadwiga H. Richter, Climate and Global Dynamics Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: jrichter@ucar.edu

Abstract

Middle atmospheric general circulation models (GCMs) must employ a parameterization for small-scale gravity waves (GWs). Such parameterizations typically make very simple assumptions about gravity wave sources, such as uniform distribution in space and time or an arbitrarily specified GW source function. The authors present a configuration of the Whole Atmosphere Community Climate Model (WACCM) that replaces the arbitrarily specified GW source spectrum with GW source parameterizations. For the nonorographic wave sources, a frontal system and convective GW source parameterization are used. These parameterizations link GW generation to tropospheric quantities calculated by the GCM and provide a model-consistent GW representation. With the new GW source parameterization, a reasonable middle atmospheric circulation can be obtained and the middle atmospheric circulation is better in several respects than that generated by a typical GW source specification. In particular, the interannual NH stratospheric variability is significantly improved as a result of the source-oriented GW parameterization. It is also shown that the addition of a parameterization to estimate mountain stress due to unresolved orography has a large effect on the frequency of stratospheric sudden warmings in the NH stratosphere by changing the propagation of stationary planetary waves into the polar vortex.

* Current affiliation: Naval Research Laboratory, Washington, D.C.

Corresponding author address: Jadwiga H. Richter, Climate and Global Dynamics Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: jrichter@ucar.edu

Save
  • Alexander, M. J., and L. Pfister, 1995: Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett., 22 , 20292032.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and J. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54 , 408419.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56 , 41674182.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. H. Beres, and L. Pfister, 2000: Tropical stratospheric gravity wave activity and relationship to clouds. J. Geophys. Res., 105 , 2229922309.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Balachandran, N., and D. Rind, 1995: Modeling the effects of UV variability and the QBO on the troposphere–stratosphere system. Part I: The middle atmosphere. J. Climate, 8 , 20582079.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61 , 18051815.

  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2002: Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59 , 18051824.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61 , 324337.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110 , D10108. doi:10.1029/2004JD005504.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I. Climatology and modeling benchmarks. J. Climate, 20 , 449469.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and Coauthors, 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20 , 470488.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59 , 923941.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., and Coauthors, 1998: MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., 25 , 939942.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., M. Leutbecher, R. Kivi, and E. Kyrö, 1999: Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia. Tellus, 51A , 951963.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111 , D22308. doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Fiedler, F., and H. A. Panofsky, 1972: The geostrophic drag coefficient and the “effective” roughness length. Quart. J. Roy. Meteor. Soc., 98 , 213220.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Fritts, D., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , (D2). 38503868.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51 , 22382245.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112 , D09301. doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M., and M. J. Reeder, 1996: Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122 , 11531174.

    • Search Google Scholar
    • Export Citation
  • Holstlag, A. M., and B. A. Boville, 1993: Local versus nonlocal boundary layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14 , 131151.

  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58 , 12491274.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and P. J. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30 , 11351152.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , (C10). 97079714.

  • Manzini, E., and N. A. McFarlane, 1998: The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J. Geophys. Res., 103 , 3152331539.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27 , 871883.

  • Matthes, K., U. Langematz, L. Gray, K. Kodera, and K. Labitzke, 2004: Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). J. Geophys. Res., 109 , D06101. doi:10.1029/2003JD004012.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44 , 17751800.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5 , 169171.

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21 , 59045924.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113 , G01021. doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52 , 36953716.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., J. Shutts, and R. Swinbank, 1996: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112 , 10011039.

    • Search Google Scholar
    • Export Citation
  • Piani, C., and D. Durran, 2001: A numerical study of stratospheric gravity waves triggered by squall lines observed during the TOGA COARE and COPT-81 experiments. J. Atmos. Sci., 58 , 37023723.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. Griffiths, 1996: Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms, and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122 , 11751195.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21 , 14871499.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, R. R. Garcia, K. Matthes, and C. Fischer, 2008: Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). J. Geophys. Res., 113 , D08101. doi:10.1029/2007JD009269.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, and G. Russel, 1988a: The GISS global climate global atmosphere model: Part I: Model structure and climatology. J. Atmos. Sci., 45 , 329370.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, and N. K. Balachandran, 1988b: The GISS global climate global atmosphere model: Part II: Model variability due to interactions between planetary waves, the mean circulation, and gravity wave drag. J. Atmos. Sci., 45 , 371386.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Lerner, J. Jonas, and C. McLinden, 2007: The effects of resolution and model physics on tracer transports in the NASA Goddard Institute for Space Studies general circulation models. J. Geophys. Res., 112 , D09315. doi:10.1029/2006JD007476.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44 , 458498.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., and H-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62 , 107124.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., and I. M. Reid, 1983: HF Doppler measurements of mesospheric gravity wave momentum fluxes. J. Atmos. Sci., 40 , 13211333.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and F. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135 , 670688.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58 , 18371857.

    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and P. Jones, 2003: Improvements to the representation of orography in the Met Office unified model. Quart. J. Roy. Meteor. Soc., 129 , 19892010.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2002: Representing drag on unresolved terrain as a distributed momentum sink. J. Atmos. Sci., 59 , 16291637.

  • Wu, D. L., and J. W. Waters, 1996: Satellite observations of atmospheric variances: A possible indication of gravity waves. Geophys. Res. Lett., 23 , 36313634.

    • Search Google Scholar
    • Export Citation
  • Xu, J., H-L. Liu, W. Yuan, A. K. Smith, R. G. Roble, C. J. Mertens, J. M. Russell III, and M. G. Mlynczak, 2007: Mesopause structure from Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED)/Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) observations. J. Geophys. Res., 112 , D09102. doi:10.1029/2006JD007711.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61 , 440457.

  • Zhang, G. J., and N. A. McFarlane, 1995: Role of convective scale momentum transport in climate simulation. J. Geophys. Res., 100 , (D1). 14171426.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1177 467 26
PDF Downloads 904 272 18