Abstract
The evolution of an African easterly wave is described using ground-based radar and ancillary datasets from three locations in West Africa: Niamey, Niger (continental), Dakar, Senegal (coastal), and Praia, Republic of Cape Verde (oceanic). The data were collected during the combined African Monsoon Multidisciplinary Analyses (AMMA) and NASA AMMA (NAMMA) campaigns in August–September 2006.
Two precipitation events originated within the wave circulation and propagated with the wave across West Africa. Mesoscale convective systems (MCSs) associated with these events were identified at all three sites ahead of, within, and behind the 700-mb wave trough. An additional propagating event was indentified that originated east of the wave and moved through the wave circulation. The MCS activity associated with this event did not show any appreciable change resulting from its interaction with the wave. The MCS characteristics at each site were different, likely due to a combination of life cycle effects and changes in relative phasing between the propagating systems and the position of low-level convergence and thermodynamic instability associated with the wave. At the ocean and coastal sites, the most intense convection occurred ahead of the wave trough where both high CAPE and low-level convergence were concentrated. At the continental site, convection was relatively weak owing to the fact that the wave dynamics and thermodynamics were not in sync when the systems passed through Niamey. The only apparent effect of the wave on MCS activity at the continental site was to extend the period of precipitation activity during one of the events that passed through coincident with the 700-mb wave trough. Convective organization at the land sites was primarily in the form of squall lines and linear MCSs oriented perpendicular to the low-level shear. The organization at the oceanic site was more complicated, transitioning from linear MCSs to widespread stratiform cloud with embedded convection. The precipitation activity was also much longer lived at the oceanic site due to the wave becoming nearly stationary near the Cape Verdes, providing an environment supportive of deep convection for an extended period.
Corresponding author address: Robert Cifelli, R/PSD2, 325 Broadway, Boulder, CO 80305. Email: rob.cifelli@noaa.gov