Statistics of Small-Scale Velocity Fluctuations and Internal Intermittency in Marine Stratocumulus Clouds

H. Siebert Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by H. Siebert in
Current site
Google Scholar
PubMed
Close
,
R. A. Shaw Leibniz Institute for Tropospheric Research, Leipzig, Germany, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by R. A. Shaw in
Current site
Google Scholar
PubMed
Close
, and
Z. Warhaft Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York

Search for other papers by Z. Warhaft in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Clouds are known to be turbulent, but the details of their internal turbulent structure have been largely unexplored. Measurements of turbulent velocities in stratocumulus clouds presented here reveal an intermittent structure consistent with that observed in classic homogeneous isotropic turbulence. The measurements were taken close to cloud top in a 200-m-thick cloud layer over a path of approximately 6 km, using a hot-wire anemometer below a helicopter as part of the Airborne Cloud Turbulence Observation System (ACTOS) measurement system. Hot-wire signal artifacts resulting from droplet impacts are removed without significantly degrading the signal, such that high-order velocity structure functions can be evaluated. The structure function analysis for orders 2–8 show statistically significant departures from the Kolmogorov’s 1941 scaling, yielding scaling exponents consistent with the Kolmogorov–Obukhov refined similarity hypothesis, with an intermittency exponent of 0.25. This is in agreement with the accepted value determined in single-phase flows under carefully controlled conditions, and no evidence is found of any departure from the large body of knowledge obtained from the laboratory on the finescale turbulence structure. This suggests that processes depending on the finescale structure of turbulence that cannot presently be measured in clouds can be explored in the laboratory setting. Since these findings pertain to clouds with relatively low liquid water content and weak turbulence, further work will be required to determine their applicability to other cloud types.

Corresponding author address: Holger Siebert, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: siebert@tropos.de

Abstract

Clouds are known to be turbulent, but the details of their internal turbulent structure have been largely unexplored. Measurements of turbulent velocities in stratocumulus clouds presented here reveal an intermittent structure consistent with that observed in classic homogeneous isotropic turbulence. The measurements were taken close to cloud top in a 200-m-thick cloud layer over a path of approximately 6 km, using a hot-wire anemometer below a helicopter as part of the Airborne Cloud Turbulence Observation System (ACTOS) measurement system. Hot-wire signal artifacts resulting from droplet impacts are removed without significantly degrading the signal, such that high-order velocity structure functions can be evaluated. The structure function analysis for orders 2–8 show statistically significant departures from the Kolmogorov’s 1941 scaling, yielding scaling exponents consistent with the Kolmogorov–Obukhov refined similarity hypothesis, with an intermittency exponent of 0.25. This is in agreement with the accepted value determined in single-phase flows under carefully controlled conditions, and no evidence is found of any departure from the large body of knowledge obtained from the laboratory on the finescale turbulence structure. This suggests that processes depending on the finescale structure of turbulence that cannot presently be measured in clouds can be explored in the laboratory setting. Since these findings pertain to clouds with relatively low liquid water content and weak turbulence, further work will be required to determine their applicability to other cloud types.

Corresponding author address: Holger Siebert, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: siebert@tropos.de

Save
  • Andreas, E. L., R. M. Williams, and C. A. Paulson, 1981: Observations of condensate profiles over Arctic leads with a hot-film anemometer. Quart. J. Roy. Meteor. Soc., 107 , 437460.

    • Search Google Scholar
    • Export Citation
  • Anselmet, F., Y. Gagne, E. J. Hopfinger, and R. A. Antonia, 1984: High-order velocity structure function in turbulent shear flows. J. Fluid Mech., 140 , 6389.

    • Search Google Scholar
    • Export Citation
  • Ayyalasomayajula, S., A. Gylfason, L. R. Collins, E. Bodenschatz, and Z. Warhaft, 2006: Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett., 97 , 144507. doi:10.1103/PhysRevLett.97.144507.

    • Search Google Scholar
    • Export Citation
  • Benzi, R., S. Ciliberto, C. Baudet, G. R. Chavarria, and R. Tripiccione, 1993a: Extended self-similarity in the dissipation range of fully developed turbulence. Europhys. Lett., 24 , 275279.

    • Search Google Scholar
    • Export Citation
  • Benzi, R., S. Ciliberto, C. Baudet, F. Massaioli, and S. Succi, 1993b: Extended self-similarity in turbulent flows. Phys. Rev. E, 48 , R29R32.

    • Search Google Scholar
    • Export Citation
  • Bruun, H. H., 1995: Hot-Wire Anemometry. Oxford University Press, 507 pp.

  • Crowe, C., M. Sommerfeld, and Y. Tsuji, 1997: Multiphase Flows with Droplets and Particles. Interpharm/CRC Press, 471 pp.

  • Davidson, P. A., 2004: Turbulence. Oxford University Press, 657 pp.

  • Frisch, U., 1995: Turbulence—The legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Gerashchenko, S., N. Sharp, S. Neuscamman, and Z. Warhaft, 2008: Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech., 617 , 255281.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31 , 235252.

  • Haugen, D., Ed. 1973: Workshop on Micrometeorology. Amer. Meteor. Soc., 392 pp.

  • Hill, R. J., 2002: Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech., 452 , 361370.

  • Ishihara, T., T. Gotoh, and Y. Kaneda, 2009: Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech., 41 , 165180.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. Q., H. Gong, J. Liu, M. D. Zhou, and Z. S. She, 2006: Hierarchical structures in a turbulent free shear flow. J. Fluid Mech., 569 , 259286.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30 , 299303.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13 , 8285.

    • Search Google Scholar
    • Export Citation
  • Korczyk, P., S. P. Malinowski, and T. A. Kowalewski, 2006: Mixing of cloud and clear air in centimeter scales observed in laboratory by means of particle image velocimetry. Atmos. Res., 82 , 173182.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. Mann, and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics. J. Atmos. Oceanic Technol., 11 , 661673.

    • Search Google Scholar
    • Export Citation
  • Malinowski, S. P., M. Andrejczuk, W. W. Grabowski, P. Korczyk, T. A. Kowalewski, and P. K. Smolarkiewicz, 2008: Laboratory and modeling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling. New J. Phys., 10 , 075020. doi:10.1088/1367-2630/10/7/075020.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., R. G. Frehlich, and B. B. Balsley, 2004: Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer. J. Fluid Mech., 515 , 319351.

    • Search Google Scholar
    • Export Citation
  • Mydlarski, L., and Z. Warhaft, 1996: On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech., 320 , 331368.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1962: Some specific features of atmospheric turbulence. J. Geophys. Res., 67 (8) 30113014.

  • Pinsky, M. B., and A. P. Khain, 2004: Collision of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci., 61 , 19261939.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Praskovsky, A., and S. Oncley, 1994: Probability density distribution of velocity differences at very high Reynolds numbers. Phys. Rev. Lett., 73 , 33993402.

    • Search Google Scholar
    • Export Citation
  • Saw, E. W., R. A. Shaw, S. Ayyalasomayajula, P. Y. Chuang, and A. Gylfason, 2008: Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett., 100 , 214501. doi:10.1103/PhysRevLett.100.214501.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2003: Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35 , 183227.

  • Shaw, R. A., and S. P. Oncley, 2001: Acceleration intermittency and enhanced collision kernels in turbulent clouds. Atmos. Res., 59–60 , 7787.

    • Search Google Scholar
    • Export Citation
  • Shen, X., and Z. Warhaft, 2000: The anisotropy of small scale structure in high Reynolds number (Rλ ∼ 1000) turbulent shear flow. Phys. Fluids, 12 , 29762989.

    • Search Google Scholar
    • Export Citation
  • Shen, X., and Z. Warhaft, 2002: Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids, 14 , 370381.

    • Search Google Scholar
    • Export Citation
  • Shraiman, B. I., and E. D. Siggia, 2000: Scalar turbulence. Nature, 405 , 639646.

  • Siebert, H., and U. Teichmann, 2000: The behaviour of an ultrasonic under cloudy conditions. Bound.-Layer Meteor., 94 , 165169.

  • Siebert, H., and R. A. Shaw, 2008: The small-scale structure of turbulence in marine stratocumulus. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, International Commission on Clouds and Precipitation–International Association of Meteorology and Atmospheric Sciences, 2.3. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Oral_02/Siebert_extended.pdf].

    • Search Google Scholar
    • Export Citation
  • Siebert, H., H. Franke, K. Lehmann, R. Maser, E. W. Saw, D. Schell, R. A. Shaw, and M. Wendisch, 2006a: Probing fine-scale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Amer. Meteor. Soc., 87 , 17271738.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., K. Lehmann, and M. Wendisch, 2006b: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci., 63 , 14511466.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., K. Lehmann, and R. A. Shaw, 2007: On the use of a hot-wire anemometer for turbulence measurements in clouds. J. Atmos. Oceanic Technol., 24 , 980993.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., and P. Kailasnath, 1993: An update on the intermittency exponent in turbulence. Phys. Fluids A, 5 , 512514.

  • Sreenivasan, K. R., and R. A. Antonia, 1997: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech., 29 , 435472.

  • Tanaka, T., and J. K. Eaton, 2008: Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Phys. Rev. Lett., 101 , 114502. doi:10.1103/PhysRevLett.101.114502.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. The MIT Press, 300 pp.

  • Tennekes, H., and J. C. Wyngaard, 1972: The intermittent small-scale structure of turbulence: Data-processing hazards. J. Fluid Mech., 55 , 93103.

    • Search Google Scholar
    • Export Citation
  • Toschi, F., and E. Bodenschatz, 2009: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech., 41 , 375404.

  • Voth, G. A., A. La Porta, A. M. Crawford, J. Alexander, and E. Bodenschatz, 2002: Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech., 469 , 121160.

    • Search Google Scholar
    • Export Citation
  • Warhaft, Z., 2000: Passive scalars in turbulent flows. Annu. Rev. Fluid Mech., 32 , 203240.

  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 408 pp.

  • Wyngaard, J. C., and H. Tennekes, 1970: Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys. Fluids, 13 , 19621969.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 84 7
PDF Downloads 163 43 10