Multiscale Models for Cumulus Cloud Dynamics

Samuel N. Stechmann Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Samuel N. Stechmann in
Current site
Google Scholar
PubMed
Close
and
Bjorn Stevens Max-Planck-Institut für Meteorologie, Hamburg, Germany, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Bjorn Stevens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cumulus clouds involve processes on a vast range of scales—including cloud droplets, turbulent mixing, and updrafts and downdrafts—and it is often difficult to determine how processes on different scales interact with each other. In this article, several multiscale asymptotic models are derived for cumulus cloud dynamics in order to (i) provide a systematic scale analysis on each scale and (ii) clarify the nature of interactions between different scales. In terms of scale analysis, it is shown that shallow cumulus updrafts can be described by balanced dynamics with a balance between source terms and ascent/descent; this is a cloud-scale version of so-called weak-temperature-gradient models. In terms of multiscale interactions, a model is derived that connects these balanced updrafts to the fluctuations within the balanced updraft envelope. These fluctuations describe parcels and updraft pulses, and this model encompasses some of the multiscale aspects of entrainment. In addition to this shallow cumulus model, to provide a broad picture of general cumulus dynamics, multiscale models are also derived for other scales; these include models for parcels and subparcel turbulent mixing and models for deep cumulus. Broadly speaking, the differences between the shallow and deep cases convey the notion that shallow cumulus dynamics are parcel dominated, whereas deep cumulus dynamics are updraft dominated; this is largely due to the difference in the apparent magnitude of the background temperature stratification. In addition to their use in guiding theory, the multiscale models also provide a framework for multiscale numerical simulations.

* Current affiliation: Department of Mathematics, University of Wisconsin—Madison, Madison, Wisconsin

Corresponding author address: Samuel Stechmann, Department of Mathematics, University of Wisconsin—Madison, 480 Lincoln Dr., Madison, WI 53706. Email: stechmann@wisc.edu

Abstract

Cumulus clouds involve processes on a vast range of scales—including cloud droplets, turbulent mixing, and updrafts and downdrafts—and it is often difficult to determine how processes on different scales interact with each other. In this article, several multiscale asymptotic models are derived for cumulus cloud dynamics in order to (i) provide a systematic scale analysis on each scale and (ii) clarify the nature of interactions between different scales. In terms of scale analysis, it is shown that shallow cumulus updrafts can be described by balanced dynamics with a balance between source terms and ascent/descent; this is a cloud-scale version of so-called weak-temperature-gradient models. In terms of multiscale interactions, a model is derived that connects these balanced updrafts to the fluctuations within the balanced updraft envelope. These fluctuations describe parcels and updraft pulses, and this model encompasses some of the multiscale aspects of entrainment. In addition to this shallow cumulus model, to provide a broad picture of general cumulus dynamics, multiscale models are also derived for other scales; these include models for parcels and subparcel turbulent mixing and models for deep cumulus. Broadly speaking, the differences between the shallow and deep cases convey the notion that shallow cumulus dynamics are parcel dominated, whereas deep cumulus dynamics are updraft dominated; this is largely due to the difference in the apparent magnitude of the background temperature stratification. In addition to their use in guiding theory, the multiscale models also provide a framework for multiscale numerical simulations.

* Current affiliation: Department of Mathematics, University of Wisconsin—Madison, Madison, Wisconsin

Corresponding author address: Samuel Stechmann, Department of Mathematics, University of Wisconsin—Madison, 480 Lincoln Dr., Madison, WI 53706. Email: stechmann@wisc.edu

Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2009: Numerical simulation of cloud–clear air interfacial mixing: Homogeneous versus inhomogeneous mixing. J. Atmos. Sci., 66 , 24932500.

    • Search Google Scholar
    • Export Citation
  • Baker, M., R. Breidenthal, T. Choularton, and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41 , 299304.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62 , 16941721.

  • Blyth, A., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32 , 626641.

  • Bodenschatz, E., S. P. Malinowski, R. A. Shaw, and F. Stratmann, 2010: Can we understand clouds without turbulence? Science, 327 , 970971.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46 , 740759.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., 1999: The sensitivity of large-eddy simulations of shallow cumulus convection to resolution and subgrid model. Quart. J. Roy. Meteor. Soc., 125 , 469482.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64 , 19952011.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr., R. L., K. K. Droegemeier, and A. M. Blyth, 1998a: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci., 55 , 34173432.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr., R. L., K. K. Droegemeier, and A. M. Blyth, 1998b: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part II: Cloud budgets. J. Atmos. Sci., 55 , 34333439.

    • Search Google Scholar
    • Export Citation
  • Carpenter Jr., R. L., K. K. Droegemeier, and A. M. Blyth, 1998c: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 55 , 34403455.

    • Search Google Scholar
    • Export Citation
  • French, J. R., G. Vali, and R. D. Kelly, 1999: Evolution of small cumulus clouds in Florida: Observations of pulsating growth. Atmos. Res., 52 , 143165.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61 , 19401952.

  • Grabowski, W. W., 2007: Representation of turbulent mixing and buoyancy reversal in bulk cloud models. J. Atmos. Sci., 64 , 36663680.

  • Grabowski, W. W., and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48 , 527546.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993a: Cloud–environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50 , 555573.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993b: Cloud–environment interface instability. Part III: Direct influence of environmental shear. J. Atmos. Sci., 50 , 38213828.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65 , 10031018.

  • Heus, T., H. J. J. Jonker, H. E. A. Van den Akker, E. J. Griffith, M. Koutek, and F. H. Post, 2009: A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment. J. Geophys. Res., 114 , D06208. doi:10.1029/2008JD010917.

    • Search Google Scholar
    • Export Citation
  • Houghton, J., Y. Ding, M. Griggs, P. Noguer, P. van der Linden, X. Dai, K. Maskell, and C. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Houze, R., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Kerstein, A. R., 1991: Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech., 231 , 361394.

    • Search Google Scholar
    • Export Citation
  • Kerstein, A. R., 1999: One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech., 392 , 277334.

    • Search Google Scholar
    • Export Citation
  • Kevorkian, J., and J. D. Cole, 1996: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences Series, Vol. 114, Springer-Verlag, 632 pp.

    • Search Google Scholar
    • Export Citation
  • Klein, R., 2000: Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angew. Math. Mech., 80 , 765777.

    • Search Google Scholar
    • Export Citation
  • Klein, R., 2010: Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech., 42 , 249274.

  • Klein, R., and A. Majda, 2006: Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn., 20 , 525551.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., C. Su, and P. McMurtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54 , 26972712.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2003: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics Series, Vol. 9, American Mathematical Society, 234 pp.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2007: Multiscale models with moisture and systematic strategies for superparameterization. J. Atmos. Sci., 64 , 27262734.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and R. Klein, 2003: Systematic multiscale models for the tropics. J. Atmos. Sci., 60 , 393408.

  • Majda, A. J., and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66 , 373392.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., M. Mohammadian, and Y. Xing, 2008: Vertically sheared horizontal flow with mass sources: A canonical balanced model. Geophys. Astrophys. Fluid Dyn., 102 , 543591.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., Y. Xing, and M. Mohammadian, 2010: Moist multi-scale models for the hurricane embryo. J. Fluid Mech., 657 , 478501.

  • Mapes, B., 1993: Gregarious tropical convection. J. Atmos. Sci., 50 , 20262037.

  • Moncrieff, M. W., M. Shapiro, J. Slingo, and F. Molteni, 2007: Collaborative research at the intersection of weather and climate. WMO Bull., 56 , 204211.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65 , 792812.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and M. Yau, 1989: A Short Course in Cloud Physics. Butterworth–Heinemann, 293 pp.

  • Seifert, A., and B. Stevens, 2010: Microphysical scaling relations in a kinematic model of isolated shallow cumulus clouds. J. Atmos. Sci., 67 , 15751590.

    • Search Google Scholar
    • Export Citation
  • Shaw, R., 2003: Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35 , 183227.

  • Siebesma, A., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., 1976: Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer. J. Atmos. Sci., 33 , 216241.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66 , 25792599.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33 , 605643.

  • Stevens, B., and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A , 143162.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and J-L. Brenguier, 2009: Cloud controlling factors—low clouds. Clouds in the Perturbed Climate System, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 173–196.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58 , 18701891.

  • Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59 , 32853301.

    • Search Google Scholar
    • Export Citation
  • Su, C., S. Krueger, P. McMurtry, and P. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47 , 4158.

    • Search Google Scholar
    • Export Citation
  • Wunsch, S., and A. R. Kerstein, 2005: A stochastic model for high-Rayleigh-number convection. J. Fluid Mech., 528 , 173205.

  • Xue, Y., L. P. Wang, and W. W. Grabowski, 2008: Growth of cloud droplets by turbulent collision–coalescence. J. Atmos. Sci., 65 , 331356.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62 , 12911310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 50 2
PDF Downloads 75 22 0