Large-Eddy Observation of Post-Cold-Frontal Continental Stratocumulus

David B. Mechem Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas

Search for other papers by David B. Mechem in
Current site
Google Scholar
PubMed
Close
,
Yefim L. Kogan Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yefim L. Kogan in
Current site
Google Scholar
PubMed
Close
, and
David M. Schultz Division of Atmospheric Sciences and Geophysics, Department of Physics, University of Helsinki, and Finnish Meteorological Institute, Helsinki, Finland, and Centre for Atmospheric Sciences, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by David M. Schultz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

More studies on the dynamics of marine stratus and stratocumulus clouds have been performed than comparable studies on continental stratocumulus. Therefore, to increase the number of observations of continental stratocumulus and to compare marine and continental stratocumulus to each other, the approach of large-eddy observation (LEO) was applied to a case of nocturnal continental stratocumulus observed over the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) in the central United States on 8 April 2006. The stratocumulus occurred in cold-air and dry-air advection behind a surface cold front. LEOs were obtained from millimeter-wavelength cloud radar and micropulse lidar, whereas traditional meteorological observations described the synoptic environment. This study focuses on a 9-h period of a predominantly nonprecipitating stratocumulus layer 250–400 m thick. A slight thinning of the cloud layer over time is consistent with dry-air advection. A deep layer of descent overlaid a shallower layer of ascent from the surface up to 800 mb, providing a mechanism for strengthening the inversion at cloud top. Time series of Doppler velocity indicate vertically coherent structures identifiable throughout much of the cloud layer. The magnitude of turbulence, as indicated by the variance of the vertical velocity, was weak relative to typical marine stratocumulus and to the one other case of continental stratocumulus in the literature. Conditional sampling of the eddy structures indicate that strong downdrafts were more prevalent than strong updrafts, and negative skewness of vertical velocity in the cloud implies an in-cloud circulation driven by longwave cooling at cloud top, similar to that in marine stratocumulus.

Corresponding author address: David B. Mechem, Atmospheric Science Program, Department of Geography, University of Kansas, 1475 Jayhawk Blvd., 213 Lindley Hall, Lawrence, KS 66045-7613. Email: dmechem@ku.edu

Abstract

More studies on the dynamics of marine stratus and stratocumulus clouds have been performed than comparable studies on continental stratocumulus. Therefore, to increase the number of observations of continental stratocumulus and to compare marine and continental stratocumulus to each other, the approach of large-eddy observation (LEO) was applied to a case of nocturnal continental stratocumulus observed over the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) in the central United States on 8 April 2006. The stratocumulus occurred in cold-air and dry-air advection behind a surface cold front. LEOs were obtained from millimeter-wavelength cloud radar and micropulse lidar, whereas traditional meteorological observations described the synoptic environment. This study focuses on a 9-h period of a predominantly nonprecipitating stratocumulus layer 250–400 m thick. A slight thinning of the cloud layer over time is consistent with dry-air advection. A deep layer of descent overlaid a shallower layer of ascent from the surface up to 800 mb, providing a mechanism for strengthening the inversion at cloud top. Time series of Doppler velocity indicate vertically coherent structures identifiable throughout much of the cloud layer. The magnitude of turbulence, as indicated by the variance of the vertical velocity, was weak relative to typical marine stratocumulus and to the one other case of continental stratocumulus in the literature. Conditional sampling of the eddy structures indicate that strong downdrafts were more prevalent than strong updrafts, and negative skewness of vertical velocity in the cloud implies an in-cloud circulation driven by longwave cooling at cloud top, similar to that in marine stratocumulus.

Corresponding author address: David B. Mechem, Atmospheric Science Program, Department of Geography, University of Kansas, 1475 Jayhawk Blvd., 213 Lindley Hall, Lawrence, KS 66045-7613. Email: dmechem@ku.edu

Save
  • Babb, D. M., J. Verlinde, and B. A. Albrecht, 1999: Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra. J. Atmos. Oceanic Technol., 16 , 489503.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004a: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004b: Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Wea. Rev., 132 , 473494.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 , L20806. doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. Austin, and S. T. Siems, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes, and entrainment. J. Atmos. Sci., 52 , 27242735.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62 , 37753791.

    • Search Google Scholar
    • Export Citation
  • Chin, H-N. S., D. J. Rodriguez, R. T. Cederwall, C. C. Chuang, A. S. Grossman, J. J. Yio, Q. Fu, and M. A. Miller, 2000: A microphysical retrieval scheme for continental low-level stratiform clouds: Impacts of the subadiabatic character on microphysical properties and radiation budgets. Mon. Wea. Rev., 128 , 25112527.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett, 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12 , 201229.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Del Genio, A. D., and A. B. Wolf, 2000: The temperature dependence of the liquid water path of low clouds in the southern Great Plains. J. Climate, 13 , 34653486.

    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from the ARM SGP Central Facility: Part I: Low-level cloud macrophysical, microphysical, and radiative properties. J. Climate, 18 , 13911410.

    • Search Google Scholar
    • Export Citation
  • Falk, M. J., and V. E. Larson, 2007: What causes partial cloudiness to form in multilayered midlevel clouds? A simulated case study. J. Geophys. Res., 112 , D12206. doi:10.1029/2006JD007666.

    • Search Google Scholar
    • Export Citation
  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62 , 32683285.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20 , 233254. Corrigendum, 20, 5208.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995a: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., D. H. Lenschow, C. W. Fairall, W. H. Schubert, and J. S. Gibson, 1995b: Doppler radar measurements of turbulence in marine stratiform cloud during ASTEX. J. Atmos. Sci., 52 , 28002808.

    • Search Google Scholar
    • Export Citation
  • Guo, H., Y. Liu, P. H. Daum, G. I. Senum, and W-K. Tao, 2008: Characteristics of vertical velocity in marine stratocumulus: Comparison of large eddy simulations with observations. Environ. Res. Lett., 3 , 045020. doi:10.1088/1748-9326/3/4/045020.

    • Search Google Scholar
    • Export Citation
  • Hogg, D. C., F. O. Guiraud, J. B. Snider, M. T. Decker, and E. R. Westwater, 1983: A steerable dual-channel microwave radiometer for measurement of water vapor and liquid in the troposphere. J. Climate Appl. Meteor., 22 , 789806.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33 , 21522168.

    • Search Google Scholar
    • Export Citation
  • Kato, S., G. G. Mace, E. E. Clothiaux, J. C. Liljegren, and R. T. Austin, 2001: Doppler cloud radar derived drop size distributions in liquid water stratus clouds. J. Atmos. Sci., 58 , 28952911.

    • Search Google Scholar
    • Export Citation
  • Kim, B-G., S. A. Klein, and J. R. Norris, 2005: Continental liquid water cloud variability and its parameterization using Atmospheric Radiation Measurement data. J. Geophys. Res., 110 , D15S08. doi:10.1029/2004JD005122.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Kogan, Z. N., D. B. Mechem, and Y. L. Kogan, 2005: Assessment of variability in continental low stratiform clouds based on observations of radar reflectivity. J. Geophys. Res., 110 , D18205. doi:10.1029/2005JD006158.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and B. Albrecht, 2000: The turbulence structure in a continental stratocumulus clouds from millimeter-wavelength radar observations. J. Atmos. Sci., 57 , 24172434.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007a: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88 , 16081624.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, E. P. Luke, K. L. Johnson, K. P. Moran, K. B. Widener, and B. A. Albrecht, 2007b: The Atmospheric Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24 , 11991214.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., B. Geerts, M. Miller, P. Daum, and R. McGraw, 2008: Threshold radar reflectivity for drizzling clouds. Geophys. Res. Lett., 35 , L03807. doi:10.1029/2003GL031201.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., Y. L. Kogan, and D. M. Schultz, 2010: Large-eddy simulation of post-cold-frontal continental stratocumulus. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21 , 49744991.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57 , 36273643.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and R. Rotunno, 1990: Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci., 47 , 11491162.

  • Moeng, C-H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77 , 261278.

    • Search Google Scholar
    • Export Citation
  • Moyer, K. A., and G. S. Young, 1991: Observations of vertical velocity skewness within the marine stratocumulus-topped boundary layer. J. Atmos. Sci., 48 , 403410.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112 , 431460.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C-H. Moeng, 1992: A second-order bulk boundary layer model. J. Atmos. Sci., 49 , 19031923.

  • Sassen, K., G. G. Mace, Z. Wang, M. R. Poellot, S. M. Sekelsky, and R. E. McIntosh, 1999: Continental stratus clouds: A case study using coordinated remote sensing and aircraft measurements. J. Atmos. Sci., 56 , 23452358.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2008: Perspectives of Fred Sanders’ research on cold fronts. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 109–126.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. J. Roebber, 2008: The fiftieth anniversary of Sanders (1955): A mesoscale-model simulation of the cold front of 17–18 April 1953. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 127–143.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., C. S. Bretherton, M. B. Baker, S. S. Shy, and R. E. Breidenthal, 1990: Buoyancy reversal and cloud-top entrainment instability. Quart. J. Roy. Meteor. Soc., 116 , 705739.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133 , 14431462.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., A. Beljaars, S. Bordoni, C. Holloway, M. Köhler, S. Krueger, V. Savic-Jovcic, and Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Wea. Rev., 135 , 9851005.

    • Search Google Scholar
    • Export Citation
  • Vali, G., R. D. Kelly, J. French, S. Haimov, D. Leon, R. E. McIntosh, and A. Pazmany, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55 , 35403564.

    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., B. Stevens, G. Vali, and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62 , 88106.

    • Search Google Scholar
    • Export Citation
  • Widener, K. B., and K. Johnson, 2006: W-band ARM Cloud Radar (WACR) Handbook. ARM Tech. Rep. ARM TR-073, Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy, 14 pp.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33 , 141157.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17 , 35763588.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. Albrecht, and J. Gottschalck, 2001: Development of nocturnal boundary layer clouds over the southern Great Plains. J. Atmos. Sci., 58 , 14091426.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 727 388 72
PDF Downloads 198 41 2