Tropical Tropopause Transition Layer Cirrus as Represented by CALIPSO Lidar Observations

Katrina S. Virts Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Katrina S. Virts in
Current site
Google Scholar
PubMed
Close
,
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
,
Qiang Fu Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Qiang Fu in
Current site
Google Scholar
PubMed
Close
, and
Thomas P. Ackerman Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Thomas P. Ackerman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial and temporal variability of cirrus cloud fraction within the tropical tropopause transition layer (TTL) is investigated based on three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, analyzed in conjunction with fields from the European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA)-Interim and temperature profiles from radiosondes launched at Manus Island, Papua New Guinea (2°S, 147°E). TTL cirrus is found to be mainly confined to the rising branch of the Hadley cell within ∼15° of the equator, with maximum cloud fraction between 14 and 15 km. The time-varying spatial pattern of cloud fraction within this belt does not resemble the pattern of cloud fraction in the layer below, as would be expected if the TTL cirrus were formed by the spreading of the anvils of convective clouds. On the contrary, within the stably stratified layer above ∼13 km, cirrus cloud fraction and temperature both appear to be modulated by the planetary-scale vertical velocity field. The time-varying spatial patterns are reminiscent of the vertical-propagating Kelvin wave response to an equatorial heat source, with the coldest, cloudiest air in the TTL centered approximately 30° of longitude to the east of the strongest heating.

Corresponding author address: Katrina Virts, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195–1640. Email: kvirts@uw.edu

Abstract

The spatial and temporal variability of cirrus cloud fraction within the tropical tropopause transition layer (TTL) is investigated based on three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, analyzed in conjunction with fields from the European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA)-Interim and temperature profiles from radiosondes launched at Manus Island, Papua New Guinea (2°S, 147°E). TTL cirrus is found to be mainly confined to the rising branch of the Hadley cell within ∼15° of the equator, with maximum cloud fraction between 14 and 15 km. The time-varying spatial pattern of cloud fraction within this belt does not resemble the pattern of cloud fraction in the layer below, as would be expected if the TTL cirrus were formed by the spreading of the anvils of convective clouds. On the contrary, within the stably stratified layer above ∼13 km, cirrus cloud fraction and temperature both appear to be modulated by the planetary-scale vertical velocity field. The time-varying spatial patterns are reminiscent of the vertical-propagating Kelvin wave response to an equatorial heat source, with the coldest, cloudiest air in the TTL centered approximately 30° of longitude to the east of the strongest heating.

Corresponding author address: Katrina Virts, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195–1640. Email: kvirts@uw.edu

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Boehm, M. T., and J. Verlinde, 2000: Stratospheric influence on upper tropospheric tropical cirrus. Geophys. Res. Lett., 27 , 32093212.

    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20 , 15271532.

  • Clark, H. L., 2005: Longitudinal variability of water vapor and cirrus in the tropical tropopause layer. J. Geophys. Res., 110 , D07107. doi:10.1029/2004JD004943.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64 , 28622880.

    • Search Google Scholar
    • Export Citation
  • Dinh, T. P., D. R. Durran, and T. P. Ackerman, 2010: Maintenance of tropical tropopause layer cirrus. J. Geophys. Res., 115 , D02104. doi:10.1029/2009JD012735.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66 , 28592873.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., Y. Hu, and Q. Yang, 2007: Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations. Geophys. Res. Lett., 34 , L14813. doi:10.1029/2007GL030099.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47 , RG1004. doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2009: Cirrus observations in the tropical tropopause layer over the western Pacific. J. Geophys. Res., 114 , D09304. doi:10.1029/2008JD011040.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Guichard, F., D. Parsons, and E. Miller, 2000: Thermodynamic and radiative impact of the correction of sounding humidity bias in the tropics. J. Climate, 13 , 36113624.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. Academic Press, 391 pp.

  • Holton, J. R., and R. S. Lindzen, 1968: A note on “Kelvin” waves in the atmosphere. Mon. Wea. Rev., 96 , 385386.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Immler, F., K. Krüger, M. Fujiwara, G. Verver, M. Rex, and O. Schrems, 2008: Correlation between equatorial Kelvin waves and the occurrence of extremely thin ice clouds at the tropical tropopause. Atmos. Chem. Phys., 8 , 40194026.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. R. Schoeberl, 1996: On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J. Geophys. Res., 101 , 2136121375.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, T-P. Bui, P. Lawson, and D. Baumgardner, 2010: Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos. Chem. Phys., 10 , 13691384.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-averaged estimates of climatic means. J. Appl. Meteor., 12 , 10661069.

  • Massie, S., A. Gettelman, W. Randel, and D. Baumgardner, 2002: Distribution of tropical cirrus in relation to convection. J. Geophys. Res., 107 , 4591. doi:10.1029/2001JD001293.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., T. P. Ackerman, W. E. Clements, F. J. Barnes, M. D. Ivey, L. D. Hatfield, and R. M. Reynolds, 1998: An atmospheric radiation and cloud station in the tropical western Pacific. Bull. Amer. Meteor. Soc., 79 , 627642.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2542.

  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57 , 18411853.

    • Search Google Scholar
    • Export Citation
  • Robinson, G. D., 1980: The transport of minor atmospheric constituents between troposphere and stratosphere. Quart. J. Roy. Meteor. Soc., 106 , 227253.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65 , 13421359.

  • Spang, R., G. Eidmann, M. Riese, D. Offermann, P. Preusse, L. Pfister, and P-H. Wang, 2002: CRISTA observations of cirrus clouds around the tropopause. J. Geophys. Res., 107 , 8174. doi:10.1029/2001JD000698.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., 2009: Cirrus in the tropical tropopause transition layer: Formation mechanisms and influence of local and planetary-scale environment. M.S. thesis, Department of Atmospheric Sciences, University of Washington, 99 pp.

  • Virts, K. S., and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67 , 30973112.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25 , 900907.

    • Search Google Scholar
    • Export Citation
  • Wang, P-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res., 101 , 2940729430.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100 , 518541.

  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and C. R. Trepte, 1998: Laminar cirrus observed near the tropical tropopause by LITE. Geophys. Res. Lett., 25 , 33513354.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., Q. Fu, J. Austin, A. Gettelman, F. Li, and H. Vömel, 2008: Observationally derived and general circulation model simulated tropical stratospheric upward mass fluxes. J. Geophys. Res., 113 , D00B07. doi:10.1029/2008JD009945.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5 , 12071222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 729 292 138
PDF Downloads 368 70 3