Effect of Tropical Waves on the Tropical Tropopause Transition Layer Upwelling

Jung-Hee Ryu Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jung-Hee Ryu in
Current site
Google Scholar
PubMed
Close
and
Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

An initial-value problem is employed with a GCM to investigate the role of the convectively driven Rossby and Kelvin waves for tropopause transition layer (TTL) upwelling in the tropics. The convective heating is mimicked with a prescribed heating field, and the Lagrangian upwelling is identified by examining the evolution of passive tracer fields whose initial distribution is identical to the initial heating field. This study shows that an overturning circulation, induced by the tropical Rossby waves, is capable of generating the TTL upwelling. Even when the heating is placed in the eastern Pacific, the TTL upwelling occurs only over the western tropical Pacific, indicating that the background flow plays a crucial role. The results from a Rossby wave source analysis suggest that a key feature of the background flow is the strong absolute vorticity gradient associated with the Asian subtropical jet. In addition, static stability is relatively weak over the western Pacific, suggesting that this may also contribute to the TTL upwelling in that region.

The background flow also modulates the internal Kelvin waves in such a manner that the coldest region in the TTL (resembling the observed “cold trap”) occurs over the western tropical Pacific. As a consequence, the upwelling air, induced by the meridional momentum flux of the Rossby wave, passes through the cold trap generated by the Kelvin wave. Since in reality the background flow is shaped by the convective heating, the climatological western tropical Pacific heating is ultimately responsible for both the TTL upwelling and the cold trap; however, both processes are realized indirectly through its impact on the background flow and the generation of the tropical waves.

* Current affiliation: Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Corresponding author address: Jung-Hee Ryu, Department of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder, CO 80309–0311. Email: jjryu@colorado.edu

Abstract

An initial-value problem is employed with a GCM to investigate the role of the convectively driven Rossby and Kelvin waves for tropopause transition layer (TTL) upwelling in the tropics. The convective heating is mimicked with a prescribed heating field, and the Lagrangian upwelling is identified by examining the evolution of passive tracer fields whose initial distribution is identical to the initial heating field. This study shows that an overturning circulation, induced by the tropical Rossby waves, is capable of generating the TTL upwelling. Even when the heating is placed in the eastern Pacific, the TTL upwelling occurs only over the western tropical Pacific, indicating that the background flow plays a crucial role. The results from a Rossby wave source analysis suggest that a key feature of the background flow is the strong absolute vorticity gradient associated with the Asian subtropical jet. In addition, static stability is relatively weak over the western Pacific, suggesting that this may also contribute to the TTL upwelling in that region.

The background flow also modulates the internal Kelvin waves in such a manner that the coldest region in the TTL (resembling the observed “cold trap”) occurs over the western tropical Pacific. As a consequence, the upwelling air, induced by the meridional momentum flux of the Rossby wave, passes through the cold trap generated by the Kelvin wave. Since in reality the background flow is shaped by the convective heating, the climatological western tropical Pacific heating is ultimately responsible for both the TTL upwelling and the cold trap; however, both processes are realized indirectly through its impact on the background flow and the generation of the tropical waves.

* Current affiliation: Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Corresponding author address: Jung-Hee Ryu, Department of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder, CO 80309–0311. Email: jjryu@colorado.edu

Save
  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107 , 4792. doi:10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Boehm, M., and S. Lee, 2003: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of Brewer–Dobson circulation. J. Atmos. Sci., 60 , 247261.

    • Search Google Scholar
    • Export Citation
  • Bonazzola, M., and P. H. Haynes, 2004: A trajectory-based study of the tropical tropopause region. J. Geophys. Res., 109 , D20112. doi:10.1029/2003JD004356.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75 , 351363.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1982: A dehydration mechanism for the stratosphere. Geophys. Res. Lett., 9 , 605608.

  • Danielsen, E. F., 1993: In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones. J. Geophys. Res., 98 , (D5). 86658681.

    • Search Google Scholar
    • Export Citation
  • Deckert, R., and M. Dameris, 2008: Higher tropical SSTs strengthen the tropical upwelling via deep convection. Geophys. Res. Lett., 35 , L10813. doi:10.1029/2008GL033719.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., M. Lowewenstein, J. Podolske, S. Oltmans, and M. Proffitt, 1999: A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res., 104 , 2209522102.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., H. Wernli, and T. Peter, 2004: Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. J. Geophys. Res., 109 , D03108. doi:10.1029/2003JD004069.

    • Search Google Scholar
    • Export Citation
  • Gettleman, A., and P. M. Forster, 2002: A climatology of the tropical tropopause layer. J. Meteor. Soc. Japan, 80 , 911924.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Gordon, C. T., and W. F. Stern, 1982: A description of the GFDL global spectral model. Mon. Wea. Rev., 110 , 625644.

  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Ho, C-H., M-D. Chou, M. Suarez, K-M. Lau, and M. M-H. Yan, 1998: Comparison of model-calculated and ERBE-retrieved clear-sky outgoing longwave radiation. J. Geophys. Res., 103 , (D10). 1152911536.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. Mclntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52 , 307319.

  • Johnston, H. S., and S. Solomon, 1979: Thunderstorms as a possible micrometeorological sink for stratospheric water. J. Geophys. Res., 84 , 31553158.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, A. M., and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63 , 14101419.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2004: Convective influence of the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 23 , 29192927.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 2009: Comment on “Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection” by Karen H. Rosenlof and George C. Reid. J. Geophys. Res., 114 , D12104. doi:10.1029/2008JD010542.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56 , 13531363.

  • Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38 , 27892796.

  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63 , 14201431.

    • Search Google Scholar
    • Export Citation
  • Oltmans, S. J., H. Vomel, D. J. Hofmann, K. L. Rosenlof, and D. Kley, 2000: The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys. Res. Lett., 27 , 34533456.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pfister, L., and Coauthors, 2001: Aircraft observations of thin cirrus clouds near the tropical tropopause. J. Geophys. Res., 106 , 97659786.

    • Search Google Scholar
    • Export Citation
  • Ploeger, F., P. Konopka, G. Günther, J-U. Grooß, and R. Müller, 2010: Impact of the vertical velocity scheme on modeling transport in the tropical tropopause layer. J. Geophys. Res., 115 , D03301. doi:10.1029/2009JD012023.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56 , 868890.

    • Search Google Scholar
    • Export Citation
  • Potter, B. E., and J. R. Holton, 1995: The role of monsoon convection in the dehydration of the lower tropical stratosphere. J. Atmos. Sci., 52 , 10341050.

    • Search Google Scholar
    • Export Citation
  • Qin, J., and W. A. Robinson, 1993: On the Rossby wave source and the steady linear response to tropical forcing. J. Atmos. Sci., 50 , 18191823.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110 , D03102. doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, A. Gettelman, J. M. Rusell III, J. Zawodny, and S. Oltmans, 2001: Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data. J. Geophys. Res., 106 , 1431314326.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res., 111 , D12312. doi:10.1029/2005JD006744.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65 , 35843595.

  • Rosenlof, K. H., and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res., 113 , D06107. doi:10.1029/2007JD009109.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and Coauthors, 2001: Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett., 28 , 11951198.

    • Search Google Scholar
    • Export Citation
  • Ryu, J-H., S. Lee, and S-W. Son, 2008: Vertically propagating Kelvin waves and tropical tropopause variability. J. Atmos. Sci., 65 , 18171837.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res., 19 , 433441.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett., 27 , 25132516.

  • Sherwood, S. C., and A. E. Dessler, 2001: A model for transport across the tropical tropopause. J. Atmos. Sci., 58 , 765779.

  • Sherwood, S. C., T. Horinouchi, and H. A. Zeleznik, 2003: Convective impact on temperatures observed near the tropical tropopause. J. Atmos. Sci., 60 , 18471856.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., J. Halverson, H. Pierce, C. Morales, and T. Iguchi, 1998: Eyeing the eye: Exciting early stage science results from TRMM. Bull. Amer. Meteor. Soc., 79 , 1711.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62 , 37413757.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2005: Recent stratospheric climate trends as evidenced in radiosonde data: Global structure and tropospheric linkages. J. Climate, 18 , 47854795.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, H. Wiryosumato, S. W. B. Harijono, and S. Kato, 1994: Radiosonde observations of equatorial atmosphere dynamics over Indonesia. I. Equatorial waves and diurnal tides. J. Geophys. Res., 99 , 1049110505.

    • Search Google Scholar
    • Export Citation
  • Wang, P-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res., 101 , 2940729429.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2004: A dynamical mechanism for tropopause sharpening. Meteor. Z., 13 , 477484.

  • Wirth, V., and T. Szabo, 2007: Sharpness of the extratropical tropopause in baroclinic life cycle experiments. Geophys. Res. Lett., 34 , L02809. doi:10.1029/2006GL028369.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and J. R. Holton, 2002: Intraseasonal variations of tropical cold-point tropopause temperatures. J. Climate., 15 , 14601473.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., M. A. Geller, and M. Zhang, 2001: Cooling trend of the tropical cold point tropopause temperatures and its implications. J. Geophys. Res., 106 , 15111522.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 656 481 142
PDF Downloads 166 62 8