Improved Representation of Ice Particle Masses Based on Observations in Natural Clouds

Andrew J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Carl Schmitt National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Carl Schmitt in
Current site
Google Scholar
PubMed
Close
,
Aaron Bansemer National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aaron Bansemer in
Current site
Google Scholar
PubMed
Close
, and
Cynthia H. Twohy Oregon State University, Corvallis, Oregon

Search for other papers by Cynthia H. Twohy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mass–dimensional relationship put forth by Brown and Francis has been widely used for developing parameterizations for representing ice cloud microphysical properties. This relationship forms the cornerstone for past and forthcoming retrievals of ice cloud properties from ground-based and spaceborne active and passive sensors but has yet to be rigorously evaluated. This study uses data from six field campaigns to evaluate this mass–dimensional relationship in a variety of ice cloud types and temperatures and to account for the deviations observed with temperature and size, based on properties of the ice particle ensembles. Although the Brown and Francis relationship provides a good match to the observations in a mean sense, it fails to capture dependences on temperature and particle size that are a result of the complex microphysical processes operative within most ice cloud layers. Mass–dimensional relationships that provide a better fit to the observations are developed.

Corresponding author address: Andrew Heymsfield, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: heyms1@ucar.edu

Abstract

The mass–dimensional relationship put forth by Brown and Francis has been widely used for developing parameterizations for representing ice cloud microphysical properties. This relationship forms the cornerstone for past and forthcoming retrievals of ice cloud properties from ground-based and spaceborne active and passive sensors but has yet to be rigorously evaluated. This study uses data from six field campaigns to evaluate this mass–dimensional relationship in a variety of ice cloud types and temperatures and to account for the deviations observed with temperature and size, based on properties of the ice particle ensembles. Although the Brown and Francis relationship provides a good match to the observations in a mean sense, it fails to capture dependences on temperature and particle size that are a result of the complex microphysical processes operative within most ice cloud layers. Mass–dimensional relationships that provide a better fit to the observations are developed.

Corresponding author address: Andrew Heymsfield, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: heyms1@ucar.edu

Save
  • Bouniol, D., J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, 2010: Microphysical characterisation of West African MCS anvils. Quart. J. Roy. Meteor. Soc., 136 , 323344.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Falconer, K., 2003: Fractal Geometry: Mathematical Foundations and Applications. Wiley, 337 pp.

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23 , 13571371.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34 , L23812. doi:10.1029/2007GL030951.

  • Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of platelike crystals and graupel. J. Atmos. Sci., 44 , 10881099.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 58 , 916938.

  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advancements in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67 , 24692482.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. G. Schmitt, C. Twohy, and M. R. Poellet, 2004a: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61 , 9821003.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. G. Schmitt, A. Bansemer, D. Baumgardner, E. M. Weinstock, J. T. Smith, and D. Sayres, 2004b: Effective ice particle densities for cold anvil cirrus. Geophys. Res. Lett., 31 , L02101. doi:10.1029/2003GL018311.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64 , 10471067.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°C. J. Atmos. Sci., 66 , 35303562.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45 , 301317.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and Coauthors, 2005: First results from the Alliance Icing Research Study II. Proc. AIAA 43rd Aerospace Sci. Meeting and Exhibit, Reno, NV, AIAA, 2005-0252. [Available online at http://www.radiometrics.com/isaac_aiaa05.pdf].

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1982: Observation of the falling motion of early snow flakes. Part I: Relationship between the free-fall pattern and the number of component snow crystals. J. Meteor. Soc. Japan, 60 , 797803.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. J. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115 , D00J08. doi:10.1029/2009JD013017.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Mitchell, D. L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48 , 18851899.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2009: The size distribution and mass weighted terminal velocity of low-latitude tropopause cirrus crystal populations. J. Atmos. Sci., 66 , 20132028.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: Dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67 , 16051616.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27 , 299307.

  • Takahashi, T., and N. Fukuta, 1988: Supercooled cloud tunnel studies on the growth of snow crystals between −4° and −20°C. J. Meteor. Soc. Japan, 66 , 841855.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, G. Wakahama, and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between −3° and −23°C. J. Meteor. Soc. Japan, 69 , 1530.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling experiment (TC4). J. Geophys. Res., 115 , D00J04. doi:10.1029/2009JD013073.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 636 250 12
PDF Downloads 562 174 7