Effects of Aerosol Solubility and Regeneration on Warm-Phase Orographic Clouds and Precipitation Simulated by a Detailed Bin Microphysical Scheme

Lulin Xue National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Amit Teller The Cyprus Institute, Nicosia, Cyprus

Search for other papers by Amit Teller in
Current site
Google Scholar
PubMed
Close
,
Roy Rasmussen National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Istvan Geresdi University of Pécs, Pécs, Hungary

Search for other papers by Istvan Geresdi in
Current site
Google Scholar
PubMed
Close
, and
Zaitao Pan Saint Louis University, St. Louis, Missouri

Search for other papers by Zaitao Pan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the possible impact of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation. The sensitivity evaluation is performed by simulating cloud formation over two identical 2D idealized mountains using a detailed bin microphysical scheme implemented into the Weather Research and Forecasting model (WRF) version 3. The dynamics, thermodynamics, topography, and microphysical pathways were designed to produce precipitating clouds in a linear hydrostatic mountain wave regime. The cloud over the second mountain is affected by regenerated aerosols advected from the cloud over the first mountain. Effects of aerosol solubility and regeneration were investigated with surface relative humidity of 95% and 85% for both clean and polluted background aerosol concentrations.

Among the findings are the following: 1) The total number of cloud drops decreases as the aerosol solubility decreases, and the impacts of aerosol solubility on cloud drops and precipitation are more significant in polluted clouds than in clean clouds. 2) Aerosol regeneration increases cloud drops and reduces the precipitation by 2%–80% in clouds over the second mountain. Regenerated aerosol particles replenish one-third to two-thirds of the missing particles when regeneration is not considered. 3) Different size distributions of regenerated aerosol particles have negligible effect on clouds and precipitation except for polluted clouds with high aerosol solubility. 4) When the solubility of initial aerosol particles decreases with an increasing size of aerosol particles, the modified solubility of regenerated aerosol particles increases precipitation over the second mountain.

Corresponding author address: Lulin Xue, National Center for Atmospheric Research, Boulder, CO 80301. Email: xuel@ucar.edu

Abstract

This study evaluates the possible impact of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation. The sensitivity evaluation is performed by simulating cloud formation over two identical 2D idealized mountains using a detailed bin microphysical scheme implemented into the Weather Research and Forecasting model (WRF) version 3. The dynamics, thermodynamics, topography, and microphysical pathways were designed to produce precipitating clouds in a linear hydrostatic mountain wave regime. The cloud over the second mountain is affected by regenerated aerosols advected from the cloud over the first mountain. Effects of aerosol solubility and regeneration were investigated with surface relative humidity of 95% and 85% for both clean and polluted background aerosol concentrations.

Among the findings are the following: 1) The total number of cloud drops decreases as the aerosol solubility decreases, and the impacts of aerosol solubility on cloud drops and precipitation are more significant in polluted clouds than in clean clouds. 2) Aerosol regeneration increases cloud drops and reduces the precipitation by 2%–80% in clouds over the second mountain. Regenerated aerosol particles replenish one-third to two-thirds of the missing particles when regeneration is not considered. 3) Different size distributions of regenerated aerosol particles have negligible effect on clouds and precipitation except for polluted clouds with high aerosol solubility. 4) When the solubility of initial aerosol particles decreases with an increasing size of aerosol particles, the modified solubility of regenerated aerosol particles increases precipitation over the second mountain.

Corresponding author address: Lulin Xue, National Center for Atmospheric Research, Boulder, CO 80301. Email: xuel@ucar.edu

Save
  • Ayers, G. P., 2005: Air pollution and climate change: Has air pollution suppressed rainfall over Australia? Clean Air Environ. Quality, 39 , 5157.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and Coauthors, 2009: Overview of the cumulus humilis aerosol processing study. Bull. Amer. Meteor. Soc., 90 , 16531667.

  • Engström, A., A. M. L. Ekman, R. Kerjci, J. Ström, M. de Reus, and C. Wang, 2008: Observational and modelling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation mode aerosols. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, 3.6.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., 2003: Modeling of the first indirect effect: Analysis of measurement requirements. Geophys. Res. Lett., 30 , 1997. doi:10.1029/2003GL017967.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and S. M. Kreidenweis, 2002: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J. Geophys. Res., 107 , 4687. doi:10.1029/2002JD002054.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. Tzivion, and Z. Levin, 1988: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45 , 33873399.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., 1997: Interaction of aerosol particles and clouds. J. Atmos. Sci., 55 , 879887.

  • Flossmann, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42 , 583606.

    • Search Google Scholar
    • Export Citation
  • Geresdi, I., 1998: Idealized simulation of the Colorado hailstorm case: Comparison of bulk and detailed microphysics. Atmos. Res., 45 , 237252.

    • Search Google Scholar
    • Export Citation
  • Geresdi, I., and R. M. Rasmussen, 2005: Freezing drizzle formation in stably stratified layer clouds. Part II: The role of giant nuclei and aerosol particle size distribution and solubility. J. Atmos. Sci., 62 , 20372057.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional framework: Model description and preliminary results. J. Atmos. Sci., 37 , 24862507.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1993: Aerosol–Cloud–Climate Interactions. Academic Press, 233 pp.

  • Jaenicke, R., 1988: Aerosol physics and chemistry. Physical and Chemical Properties of the Air, G. Fischer, Ed., Landolt-Bömstein New Series, Vol. 4b, Springer, 391–457.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from cloud: An attempt at classification. J. Atmos. Sci., 65 , 17211748.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48 , 11601189.

    • Search Google Scholar
    • Export Citation
  • Laj, P., and Coauthors, 1997: Experimental evidence for in-cloud production of aerosol sulphate. Atmos. Environ., 31 , 25032514.

  • Lance, S., A. Nenes, and T. A. Rissman, 2004: Chemical and dynamical effects on cloud droplet number: Implications for estimates of the aerosol indirect effect. J. Geophys. Res., 109 , D22208. doi:10.1029/2004JD004596.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2008: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112 , D10225. doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • McFiggans, G., and Coauthors, 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6 , 25932649.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., J. Brinkmann, and H. T. Pruppacher, 1992: A wind tunnel study on the drop-to-particle conversion. J. Aerosol Sci., 23 , 245256.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, M. Gilmore, W. Gong, R. Leaitch, and A. Muhlbauer, 2009: WMO International Cloud Modeling Workshop. Bull. Amer. Meteor. Soc., 90 , 16831686.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and U. Lohmann, 2008: Sensitivity studies of the role of aerosol in warm-phase orographic precipitation in different dynamical flow regimes. J. Atmos. Sci., 65 , 25222542.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., T. Hashino, L. Xue, A. Teller, U. Lohmann, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Intercomparison of aerosol–cloud–precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys. Discuss., 10 , 1048710550.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7 , 19611971.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. Jaenicke, 1995: The processing of water vapor and aerosols by atmospheric clouds, a global estimate. Tellus, 38 , 283295.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59 , 837860.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics: Part I. Description of the model. J. Atmos. Sci., 53 , 497519.

    • Search Google Scholar
    • Export Citation
  • Reutter, P., and Coauthors, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9 , 70677080.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287 , 17931796.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Rep. NCAR/TNC-475+STR, 113 pp.

  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6 , 6780.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44 , 31393149.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., T. Reisin, and Z. Levin, 1999: A numerical solution of the kinetic collection equation using high spectral grid resolution: A proposed reference. J. Comput. Phys., 148 , 527544.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida convection. Part I: Mesoscale simulations. J. Atmos. Sci., 63 , 17521775.

    • Search Google Scholar
    • Export Citation
  • Wang, H., W. C. Skamarock, and G. Feingold, 2009: Evaluation of scalar advection schemes in the Advanced Research WRF model using large-eddy simulations of aerosol–cloud interactions. Mon. Wea. Rev., 137 , 25472558.

    • Search Google Scholar
    • Export Citation
  • Wurzler, S., T. G. Reisin, and Z. Levin, 2000: Modification of mineral dust particles by cloud processing and subsequent effect on drop size distributions. J. Geophys. Res., 105 , 45014512.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., Z. Levin, T. G. Reisin, and S. Tzivion, 2000: The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmos. Res., 53 , 93116.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., K. S. Carslaw, and G. Feingold, 2005: Vertical transport and processing of aerosols in a mixed-phase convective cloud and the feedback on cloud development. Quart. J. Roy. Meteor. Soc., 131 , 221245.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 707 238 108
PDF Downloads 324 86 6