MJO Signals in Latent Heating: Results from TRMM Retrievals

Chidong Zhang RSMAS, University of Miami, Miami, Florida

Search for other papers by Chidong Zhang in
Current site
Google Scholar
PubMed
Close
,
Jian Ling RSMAS, University of Miami, Miami, Florida

Search for other papers by Jian Ling in
Current site
Google Scholar
PubMed
Close
,
Samson Hagos RSMAS, University of Miami, Miami, Florida

Search for other papers by Samson Hagos in
Current site
Google Scholar
PubMed
Close
,
Wei-Kuo Tao GSFC, NASA, Greenbelt, Maryland

Search for other papers by Wei-Kuo Tao in
Current site
Google Scholar
PubMed
Close
,
Steve Lang GSFC, NASA, Greenbelt, Maryland

Search for other papers by Steve Lang in
Current site
Google Scholar
PubMed
Close
,
Yukari N. Takayabu Center for Climate System Research, University of Tokyo, Tokyo, Japan

Search for other papers by Yukari N. Takayabu in
Current site
Google Scholar
PubMed
Close
,
Shoichi Shige Graduate School of Science, Kyoto University, Kyoto, Japan

Search for other papers by Shoichi Shige in
Current site
Google Scholar
PubMed
Close
,
Masaki Katsumata * RIGC, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Masaki Katsumata in
Current site
Google Scholar
PubMed
Close
,
William S. Olson JCET, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by William S. Olson in
Current site
Google Scholar
PubMed
Close
, and
Tristan L’Ecuyer Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Tristan L’Ecuyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four Tropical Rainfall Measuring Mission (TRMM) datasets of latent heating were diagnosed for signals in the Madden–Julian oscillation (MJO). In all four datasets, vertical structures of latent heating are dominated by two components—one deep with its peak above the melting level and one shallow with its peak below. Profiles of the two components are nearly ubiquitous in longitude, allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered. All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at a period of 50 days and zonal wavenumber 1, well distinguished from lower- and higher-frequency power and much stronger than the corresponding westward power. The shallow component shows similar but slightly less robust MJO spectral peaks. MJO signals were further extracted from a combination of bandpass (30–90 day) filtered deep and shallow components. Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans. There is a local minimum in the deep components over the Maritime Continent. The shallow components of the MJO differ substantially among the four TRMM datasets in their detailed zonal distributions in the Eastern Hemisphere. In composites of the heating evolution through the life cycle of the MJO, the shallow components lead the deep ones in some datasets and at certain longitudes. In many respects, the four TRMM datasets agree well in their deep components, but not in their shallow components and in the phase relations between the deep and shallow components. These results indicate that caution must be exercised in applications of these latent heating data.

+ Current affiliation: Pacific Northwest National Laboratory, Richland, Washington

Corresponding author address: Chidong Zhang, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: czhang@rsmas.miami.edu

Abstract

Four Tropical Rainfall Measuring Mission (TRMM) datasets of latent heating were diagnosed for signals in the Madden–Julian oscillation (MJO). In all four datasets, vertical structures of latent heating are dominated by two components—one deep with its peak above the melting level and one shallow with its peak below. Profiles of the two components are nearly ubiquitous in longitude, allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered. All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at a period of 50 days and zonal wavenumber 1, well distinguished from lower- and higher-frequency power and much stronger than the corresponding westward power. The shallow component shows similar but slightly less robust MJO spectral peaks. MJO signals were further extracted from a combination of bandpass (30–90 day) filtered deep and shallow components. Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans. There is a local minimum in the deep components over the Maritime Continent. The shallow components of the MJO differ substantially among the four TRMM datasets in their detailed zonal distributions in the Eastern Hemisphere. In composites of the heating evolution through the life cycle of the MJO, the shallow components lead the deep ones in some datasets and at certain longitudes. In many respects, the four TRMM datasets agree well in their deep components, but not in their shallow components and in the phase relations between the deep and shallow components. These results indicate that caution must be exercised in applications of these latent heating data.

+ Current affiliation: Pacific Northwest National Laboratory, Richland, Washington

Corresponding author address: Chidong Zhang, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: czhang@rsmas.miami.edu

Save
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64 , 23322354.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., 1977: Viscous internal gravity waves and low-frequency oscillations in the tropics. J. Atmos. Sci., 34 , 901910.

  • Chang, C-P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50-day oscillations. J. Atmos. Sci., 45 , 17091720.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments. J. Climate, 22 , 39393959.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45 , 416433.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, C-L. Shie, T. S. L’Ecuyer, and W-K. Tao, 2009: Combining satellite microwave radiometer and radar observations to estimate atmospheric latent heating profiles. J. Climate, 22 , 63566376.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., and Coauthors, 2010: Estimates of tropical diabatic heating profiles: Commonalities and uncertainties. J. Climate, 23 , 542558.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2009: Vertical heating structures associated with the MJO as characterized by TRMM estimates, ECMWF reanalyses and forecasts: A case study during 1998/99 winter. J. Climate, 22 , 60016020.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and X. Lin, 1997: Episodic trade-wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54 , 20202034.

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23 , 187200.

  • Katsumata, M., R. H. Johnson, and P. E. Ciesielski, 2009: Observed synoptic-scale variability during the developing phase of an ISO over the Indian Ocean during MISMO. J. Atmos. Sci., 66 , 34343448.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63 , 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008: Multicloud models for organized tropical convection: enhanced congestus heating. J. Atmos. Sci., 65 , 895914.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31 , L10101. doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y-M., M. Katsumata, S. Mori, S. Satoh, Y. Hirose, and H. Ueda, 2009: Climatology of warm rain and associated latent heating derived from TRMM PR observations. J. Climate, 22 , 49084929.

    • Search Google Scholar
    • Export Citation
  • Kummerow, and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K-M., and D. E. Waliser, 2005: Intraseasonal Variability of the Atmosphere–Ocean Climate System. Springer, 474 pp.

  • Lau, W. K-M., and H-T. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23 , 504518.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties. J. Climate, 16 , 19671985.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and G. L. Stephens, 2007: The tropical atmospheric energy budget from the TRMM perspective. Part II: Evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998–99 ENSO cycle. J. Climate, 20 , 45484571.

    • Search Google Scholar
    • Export Citation
  • Li, C., X. Jia, J. Ling, W. Zhou, and C. Zhang, 2009: Sensitivity of MJO simulations to convective heating profiles. Climate Dyn., 32 , 167187.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. E. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • López Carrillo, C., and D. J. Raymond, 2005: Moisture tendency equations in a tropical atmosphere. J. Atmos. Sci., 62 , 16011613.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation: A review. Mon. Wea. Rev., 112 , 814837.

  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22 , 711729.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. K. Esbensen, 2003: The amplification of east Pacific Madden–Julian oscillation convection and wind anomalies during June–November. J. Climate, 16 , 34823497.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., D. B. Chelton, and S. K. Esbensen, 2008: Subseasonal SST variability in the tropical eastern North Pacific during boreal summer. J. Climate, 21 , 41494167.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2001: Water’s two height scales: The moist adiabat and the radiative troposphere. Quart. J. Roy. Meteor. Soc., 127 , 22532266.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2005: Variability in the characteristics of precipitation systems in the tropical Pacific. Part I: Spatial structure. J. Climate, 18 , 823840.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., M. Satoh, and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden–Julian oscillation event: Model diagnosis. J. Geophys. Res., 113 , D17210. doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Morita, J., Y. N. Takayabu, S. Shige, and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42 , 107126.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., T. L. Bell, and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19 , 13331344.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102 , 1728.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22 , 30313046.

  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Z. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9) 120.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Shie, C-L., W-K. Tao, J. Simpson, and C-H. Sui, 2003: Quasi-equilibrium states in the tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. J. Climate, 16 , 817833.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43 , 10951113.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W-K. Tao, and C-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46 , 10981124.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, and W-K. Tao, 2008: Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. J. Appl. Meteor. Climatol., 47 , 620640.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, S. Kida, W-K. Tao, X. Zeng, C. Yokoyama, and T. L’Ecuyer, 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of lookup tables from two- and three-dimensional cloud-resolving model simulations. J. Climate, 22 , 55775594.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S-P. Xie, E. D. Maloney, S. P. de Szoeke, and T. Miyama, 2010: Intraseasonal variability in the far east Pacific: Investigation of the role of air–sea coupling in a regional coupled model. Climate Dyn., doi:10.1007/s00382-010-0786-2, in press.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged tropical precipitation and surface wind, given the sea surface temperature. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 219–251.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., and K-M. Lau, 1989: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46 , 3756.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan, 71 , 685700.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan, 78 , 333355.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87 , 15551572.

  • Tao, W-K., S. Lang, X. Zeng, S. Shige, and Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23 , 18741893.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2006: Intraseasonal Variability: The Asian Monsoon. Springer, 844 pp.

  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22 , 30063030.

  • Wang, B., 2005: Theory. Intraseasonal Variability of the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Praxis, 307–360.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110 , 481485.

  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60 , 377392.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhang, C., and H. H. Hendon, 1997: Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54 , 741752.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality of the Madden–Julian oscillation. J. Climate, 17 , 31693180.

  • Zhang, C., and S. Hagos, 2009: Bimodal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66 , 36213640.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18 , 40464064.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and X. Song, 2009: Interaction of deep and shallow convection is key to Madden–Julian oscillation simulation. Geophys. Res. Lett., 36 , L09708. doi:10.1029/2009GL037340.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 529 95 8
PDF Downloads 195 70 2