Daytime Heat Transfer Processes Related to Slope Flows and Turbulent Convection in an Idealized Mountain Valley

Stefano Serafin Atmospheric Physics Group, Department of Civil and Environmental Engineering, University of Trento, Trento, Italy

Search for other papers by Stefano Serafin in
Current site
Google Scholar
PubMed
Close
and
Dino Zardi Atmospheric Physics Group, Department of Civil and Environmental Engineering, University of Trento, Trento, Italy

Search for other papers by Dino Zardi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mechanisms governing the daytime development of thermally driven circulations along the transverse axis of idealized two-dimensional valleys are investigated by means of large-eddy simulations. In particular, the impact of slope winds and turbulent convection on the heat transfer from the vicinity of the ground surface to the core of the valley atmosphere is examined. The interaction between top-down heating produced by compensating subsidence in the valley core and bottom-up heating due to turbulent convection is described. Finally, an evaluation of the depth of the atmospheric layer affected by the slope wind system is provided.

Corresponding author address: Stefano Serafin, Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy. Email: stefano.serafin@ing.unitn.it

Abstract

The mechanisms governing the daytime development of thermally driven circulations along the transverse axis of idealized two-dimensional valleys are investigated by means of large-eddy simulations. In particular, the impact of slope winds and turbulent convection on the heat transfer from the vicinity of the ground surface to the core of the valley atmosphere is examined. The interaction between top-down heating produced by compensating subsidence in the valley core and bottom-up heating due to turbulent convection is described. Finally, an evaluation of the depth of the atmospheric layer affected by the slope wind system is provided.

Corresponding author address: Stefano Serafin, Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy. Email: stefano.serafin@ing.unitn.it

Save
  • Andretta, M., A. Weiss, N. Kljun, and M. W. Rotach, 2001: Near-surface turbulent momentum flux in an Alpine valley: Observational results. MAP Newsletter, No. 15, Meteo Swiss, Zurich, Switzerland, 122–125.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1994: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121 , 255–270.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: Methodology, verification and sensitivity experiments. J. Appl. Meteor. Climatol., 45 , 63–86.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1951: Local winds. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 655–672.

  • de Franceschi, M., G. Rampanelli, D. Sguerso, D. Zardi, and P. Zatelli, 2003: Development of a measurement platform on a light airplane and analysis of airborne measurements in the atmospheric boundary layer. Ann. Geophys., 46 , 269–283.

    • Search Google Scholar
    • Export Citation
  • de Franceschi, M., D. Zardi, M. Tagliazucca, and F. Tampieri, 2009: Analysis of second-order moments in the surface layer turbulence in an Alpine valley. Quart. J. Roy. Meteor. Soc., 135 , 1750–1765.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F., 2002: Structure and morphology of the convective boundary layer in mountainous terrain. Ph.D. thesis, Department of Earth and Ocean Sciences, University of British Columbia, 191 pp.

  • De Wekker, S. F., 2008: Observational and numerical evidence of depressed convective boundary layer height near a mountain base. J. Appl. Meteor. Climatol., 47 , 1017–1026.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F., S. Zhong, J. D. Fast, and C. D. Whiteman, 1998: A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. J. Appl. Meteor., 37 , 606–622.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F., D. Steyn, M. Rotach, J. Fast, and S. Zhong, 2002: Observations and numerical modeling of the daytime boundary layer structure in the Riviera Valley, Switzerland. Extended Abstracts, 10th Conf. on Mountain Meteorology, Park City, UT, Amer. Meteor. Soc., 3.5. [Available online at http://ams.confex.com/ams/10Mountain/techprogram/paper_39536.htm].

    • Search Google Scholar
    • Export Citation
  • Haiden, T., 2003: On the pressure field in the slope wind layer. J. Atmos. Sci., 60 , 1632–1635.

  • Kondo, J., T. Kuwagata, and S. Haginoya, 1989: Heat budget analysis of nocturnal cooling and daytime heating in a basin. J. Atmos. Sci., 46 , 2917–2933.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 1984: A large eddy simulation model for the study of planetary boundary layer turbulence. J. Atmos. Sci., 41 , 2052–2061.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536–549.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. Routledge, 435 pp.

  • Prandtl, L., 1952: Mountain and valley winds in stratified air. Essentials of Fluid Dynamics, Hafner, 422–425.

  • Rampanelli, G., and D. Zardi, 2004: A method to determine the capping inversion of the convective boundary layer. J. Appl. Meteor., 43 , 925–933.

    • Search Google Scholar
    • Export Citation
  • Rampanelli, G., D. Zardi, and R. Rotunno, 2004: Mechanisms of up-valley winds. J. Atmos. Sci., 61 , 3097–3111.

  • Ren, D., and M. Xue, 2004: A revised force-restore model for land surface modeling. J. Appl. Meteor., 43 , 1768–1782.

  • Reuten, C., D. G. Steyn, and S. E. Allen, 2007: Water tank studies of atmospheric boundary layer structure and air pollution transport in upslope flow systems. J. Geophys. Res., 112 , D11114. doi:10.1029/2006JD008045.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary layer structure over complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133 , 937–948.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., and R. Rotunno, 2010: Mechanisms of along-valley winds and heat exchange over mountainous terrain. J. Atmos. Sci., 67 , 3033–3047.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1990: Large-eddy simulation of the up-slope boundary layer. Quart. J. Roy. Meteor. Soc., 116 , 637–670.

  • Serafin, S., and D. Zardi, 2010: Structure of the atmospheric boundary layer in the vicinity of a developing upslope flow system: A numerical model study. J. Atmos. Sci., 67 , 1171–1185.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1984: Area–height distribution of a valley and its relation to the valley wind. Beitr. Phys. Atmos., 57 , 64–71.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary-Layer Meteorology. Kluwer, 670 pp.

  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36 , 264–286.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., and M. W. Rotach, 2004: Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Quart. J. Roy. Meteor. Soc., 130 , 2605–2627.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., F. K. Chow, M. W. Rotach, R. L. Street, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep alpine valley. Part II: Flow structure and heat budgets. J. Appl. Meteor. Climatol., 45 , 87–107.

    • Search Google Scholar
    • Export Citation
  • Wenger, R., 1923: Zur Theorie der Berg- und Talwindes. Meteor. Z., 40 , 193–204.

  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys. Part I: Observations. J. Appl. Meteor., 21 , 270–289.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., and T. B. McKee, 1982: Breakup of temperature inversions in deep mountain valleys. Part II: Thermodynamic model. J. Appl. Meteor., 21 , 290–302.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS): A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161–193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS): A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143–165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1022 221 13
PDF Downloads 785 157 10