Spatially Variable Advection Correction of Radar Data. Part II: Test Results

Alan Shapiro School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alan Shapiro in
Current site
Google Scholar
PubMed
Close
,
Katherine M. Willingham Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Katherine M. Willingham in
Current site
Google Scholar
PubMed
Close
, and
Corey K. Potvin School of Meteorology, and Center for Analysis and Prediction of Storms, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Corey K. Potvin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatially variable advection-correction/analysis procedure introduced in Part I is tested using analytical reflectivity blobs embedded in a solid-body vortex, and Terminal Doppler Weather Radar (TDWR) and Weather Surveillance Radar-1988 Doppler (WSR-88D) data of a tornadic supercell thunderstorm that passed over central Oklahoma on 8 May 2003. In the TDWR tests, plan position indicator (PPI) data at two volume scan times are input to the advection-correction procedure, with PPI data from a third scan time, intermediate between the two input times, that is used to validate the results. The procedure yields analyzed reflectivity fields with lower root-mean-square errors and higher correlation coefficients than those reflectivity fields that were advection corrected with any constant advection speed.

Corresponding author address: Alan Shapiro, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Room 5900, Norman, OK 73072. Email: ashapiro@ou.edu

Abstract

The spatially variable advection-correction/analysis procedure introduced in Part I is tested using analytical reflectivity blobs embedded in a solid-body vortex, and Terminal Doppler Weather Radar (TDWR) and Weather Surveillance Radar-1988 Doppler (WSR-88D) data of a tornadic supercell thunderstorm that passed over central Oklahoma on 8 May 2003. In the TDWR tests, plan position indicator (PPI) data at two volume scan times are input to the advection-correction procedure, with PPI data from a third scan time, intermediate between the two input times, that is used to validate the results. The procedure yields analyzed reflectivity fields with lower root-mean-square errors and higher correlation coefficients than those reflectivity fields that were advection corrected with any constant advection speed.

Corresponding author address: Alan Shapiro, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Room 5900, Norman, OK 73072. Email: ashapiro@ou.edu

Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137 , 1805–1824.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74 , 1669–1687.

    • Search Google Scholar
    • Export Citation
  • Donner, K. M., 2007: High-resolution dual-Doppler analysis of two tornadic thunderstorms using a new formulation of advection-correction. M.S. thesis, School of Meteorology, University of Oklahoma, 176 pp.

  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26 , 911–927.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1982: Errors in fixed and moving frame of references: Applications for conventional and Doppler radar analysis. J. Atmos. Sci., 39 , 2279–2300.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130 , 2859–2873.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley and Sons, 477 pp.

  • Hu, M., and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135 , 507–525.

    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74 , 1293–1311.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47 , 1940–1961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66 , 667–685.

    • Search Google Scholar
    • Export Citation
  • Laroche, S., and I. Zawadzki, 1995: Retrievals of horizontal winds from single-Doppler clear-air data by methods of cross correlation and variational analysis. J. Atmos. Oceanic Technol., 12 , 721–738.

    • Search Google Scholar
    • Export Citation
  • Liu, S., M. Xue, and Q. Xu, 2007: Using wavelet analysis to detect tornadoes from Doppler radar radial-velocity observations. J. Atmos. Oceanic Technol., 24 , 344–359.

    • Search Google Scholar
    • Export Citation
  • Michelson, M., W. W. Shrader, and J. G. Wieler, 1990: Terminal Doppler weather radar. Microwave J., 33 , 139–148.

  • NOAA/NWS, 2005: TDWR interface control and specifications documentation for the NWS supplemental product generator, version 4.3, 42 pp. [Available online at http://wdtb.noaa.gov/buildTraining/TDWR/TDWR_SPG_ICD_v43.pdf].

    • Search Google Scholar
    • Export Citation
  • Oye, D., and M. Case, 1995: REORDER: A program for gridding radar data—Installation and use manual for the UNIX version. Atmospheric Technology Division, National Center for Atmospheric Research, 20 pp. [Available from Atmospheric Technology Division, NCAR, P.O. Box 3000, Boulder, CO 80307].

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., A. Shapiro, T. Y. Yu, J. Gao, and M. Xue, 2009: Using a low-order model to detect and characterize tornadoes in multiple-Doppler radar data. Mon. Wea. Rev., 137 , 1230–1249.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136 , 2849–2870.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44 , 557–570.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010: Spatially variable advection correction of radar data. Part I: Theoretical considerations. J. Atmos. Sci., 67 , 3445–3456.

    • Search Google Scholar
    • Export Citation
  • Shun, C. M., S. Y. Lau, and O. S. M. Lee, 2003: Terminal Doppler weather radar observation of atmospheric flow over complex terrain during tropical cyclone passages. J. Appl. Meteor., 42 , 1697–1710.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., 2001: Improving tornado warnings with the Federal Aviation Administration’s terminal Doppler weather radar. Bull. Amer. Meteor. Soc., 82 , 861–874.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., T. Y. Yu, M. Yeary, A. Shapiro, S. Nemati, M. Foster, D. L. Andra, and M. Jain, 2008: Tornado detection using a neuro-fuzzy system to integrate shear and spectral signatures. J. Atmos. Oceanic Technol., 25 , 1136–1148.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 59 6
PDF Downloads 190 60 6