Mechanisms of Jet Formation on the Giant Planets

Junjun Liu California Institute of Technology, Pasadena, California

Search for other papers by Junjun Liu in
Current site
Google Scholar
PubMed
Close
and
Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are variously thought to be driven by differential radiative heating of the upper atmosphere or by intrinsic heat fluxes emanating from the deep interior. However, existing models cannot account for the different flow configurations on the giant planets in an energetically consistent manner. Here a three-dimensional general circulation model is used to show that the different flow configurations can be reproduced by mechanisms universal across the giant planets if differences in their radiative heating and intrinsic heat fluxes are taken into account. Whether the equatorial jet is prograde or retrograde depends on whether the deep intrinsic heat fluxes are strong enough that convection penetrates into the upper troposphere and generates strong equatorial Rossby waves there. Prograde equatorial jets result if convective Rossby wave generation is strong and low-latitude angular momentum flux divergence owing to baroclinic eddies generated off the equator is sufficiently weak (Jupiter and Saturn). Retrograde equatorial jets result if either convective Rossby wave generation is weak or absent (Uranus) or low-latitude angular momentum flux divergence owing to baroclinic eddies is sufficiently strong (Neptune). The different speeds and widths of the off-equatorial jets depend, among other factors, on the differential radiative heating of the atmosphere and the altitude of the jets, which are vertically sheared. The simulations have closed energy and angular momentum balances that are consistent with observations of the giant planets. They exhibit temperature structures closely resembling those observed and make predictions about as yet unobserved aspects of flow and temperature structures.

Corresponding author address: Tapio Schneider, California Institute of Technology, Mail Code 100-23, 1200 E. California Blvd., Pasadena, CA 91125. Email: tapio@caltech.edu

Abstract

The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are variously thought to be driven by differential radiative heating of the upper atmosphere or by intrinsic heat fluxes emanating from the deep interior. However, existing models cannot account for the different flow configurations on the giant planets in an energetically consistent manner. Here a three-dimensional general circulation model is used to show that the different flow configurations can be reproduced by mechanisms universal across the giant planets if differences in their radiative heating and intrinsic heat fluxes are taken into account. Whether the equatorial jet is prograde or retrograde depends on whether the deep intrinsic heat fluxes are strong enough that convection penetrates into the upper troposphere and generates strong equatorial Rossby waves there. Prograde equatorial jets result if convective Rossby wave generation is strong and low-latitude angular momentum flux divergence owing to baroclinic eddies generated off the equator is sufficiently weak (Jupiter and Saturn). Retrograde equatorial jets result if either convective Rossby wave generation is weak or absent (Uranus) or low-latitude angular momentum flux divergence owing to baroclinic eddies is sufficiently strong (Neptune). The different speeds and widths of the off-equatorial jets depend, among other factors, on the differential radiative heating of the atmosphere and the altitude of the jets, which are vertically sheared. The simulations have closed energy and angular momentum balances that are consistent with observations of the giant planets. They exhibit temperature structures closely resembling those observed and make predictions about as yet unobserved aspects of flow and temperature structures.

Corresponding author address: Tapio Schneider, California Institute of Technology, Mail Code 100-23, 1200 E. California Blvd., Pasadena, CA 91125. Email: tapio@caltech.edu

Save
  • Allison, M., D. A. Godfrey, and R. F. Beebe, 1990: A wave dynamical interpretation of Saturn’s polar hexagon. Science, 247 , 10611063.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89 , 609646.

  • Atkinson, D. H., J. B. Pollack, and A. Seiff, 1998: The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res., 103 , 2291122928.

    • Search Google Scholar
    • Export Citation
  • Atreya, S. K., M. H. Wong, T. C. Owen, P. R. Mahaffy, H. B. Niemann, I. de Pater, P. Drossart, and T. Encrenaz, 1999: A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci., 47 , 12431262.

    • Search Google Scholar
    • Export Citation
  • Aurnou, J., M. Heimpel, and J. Wicht, 2007: The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus, 190 , 110126.

    • Search Google Scholar
    • Export Citation
  • Busse, F. H., 1976: A simple model of convection in the Jovian atmosphere. Icarus, 29 , 255260.

  • Busse, F. H., 1978: Nonlinear properties of thermal convection. Rep. Prog. Phys., 41 , 19291967.

  • Chan, K. L., and H. G. Mayr, 2008: A shallow convective model for Jupiter’s alternating wind bands. J. Geophys. Res., 113 , E10002. doi:10.1029/2008JE003124.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20 , 607609.

  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2002: Rhines scale and spectra of the β-plane turbulence with bottom drag. Phys. Rev. E, 65 , 067301. doi:10.1103/PhysRevE.65.067301.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. M. Barbara, J. Ferrier, A. P. Ingersoll, R. A. West, A. R. Vasavada, J. Spitale, and C. C. Porco, 2007: Saturn eddy momentum fluxes and convection: First estimates from Cassini images. Icarus, 189 , 479492.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy transport barriers. J. Atmos. Sci., 65 , 855874.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111 , 20162033.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fletcher, L. N., and Coauthors, 2007: Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus, 189 , 457478.

    • Search Google Scholar
    • Export Citation
  • Fletcher, L. N., and Coauthors, 2008: Temperature and composition of Saturn’s polar hot spots and hexagon. Science, 319 , 7981.

  • Gibbard, S. G., I. de Pater, H. G. Roe, S. Martin, B. A. Macintosh, and C. E. Max, 2003: The altitude of Neptune cloud features from high-spatial-resolution near-infrared spectra. Icarus, 166 , 359374.

    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., and Coauthors, 2000: Observation of moist convection in Jupiter’s atmosphere. Nature, 403 , 628630.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Godfrey, D. A., 1988: A hexagon feature around Saturn’s north pole. Icarus, 76 , 335356.

  • Guillot, T., 1999: A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci., 47 , 11831200.

  • Guillot, T., 2005: The interiors of giant planets: Models and outstanding questions. Annu. Rev. Earth Planet. Sci., 33 , 493530.

  • Guillot, T., D. J. Stevenson, W. B. Hubbard, and D. Saumon, 2004: The interior of Jupiter. Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal, T. E. Dowling, and W. B. McKinnon, Eds., Cambridge University Press, 35–57.

    • Search Google Scholar
    • Export Citation
  • Hammel, H. B., K. Rages, G. W. Lockwood, E. Karkoschka, and I. de Pater, 2001: New measurements of the winds of Uranus. Icarus, 153 , 229235.

    • Search Google Scholar
    • Export Citation
  • Hammel, H. B., I. de Pater, S. Gibbard, G. W. Lockwood, and K. Rages, 2005: Uranus in 2003: Zonal winds, banded structure, and discrete features. Icarus, 175 , 534545.

    • Search Google Scholar
    • Export Citation
  • Hanel, R. A., B. J. Conrath, L. W. Herath, V. G. Kunde, and J. A. Pirraglia, 1981: Albedo, internal heat, and energy balance of Jupiter—Preliminary results of the Voyager infrared investigation. J. Geophys. Res., 86 , 87058712.

    • Search Google Scholar
    • Export Citation
  • Hanel, R. A., B. J. Conrath, V. G. Kunde, J. C. Pearl, and J. A. Pirraglia, 1983: Albedo, internal heat flux, and energy balance of Saturn. Icarus, 53 , 262285.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Heimpel, M., and J. Aurnou, 2007: Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high-latitude jets on Jupiter and Saturn. Icarus, 187 , 540557.

    • Search Google Scholar
    • Export Citation
  • Heimpel, M., J. Aurnou, and J. Wicht, 2005: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature, 438 , 193196.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1975: Momentum transport by quasigeostrophic eddies. J. Atmos. Sci., 32 , 14941497.

  • Held, I. M., 2000: The general circulation of the atmosphere. Proc. Program in Geophysical Fluid Dynamics, Woods Hole, MA, Woods Hole Oceanographic Institution, 1–54. [Available online at https://darchive.mblwhoilibrary.org/handle/1912/15].

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75 , 18251830.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. International Geophysics Series, Vol. 88, Elsevier, 547 pp.

  • Hubbard, W. B., W. J. Nellis, A. C. Mitchell, N. C. Holmes, S. S. Limaye, and P. C. McCandless, 1991: Interior structure of Neptune: Comparison with Uranus. Science, 253 , 648651.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., 1976: Pioneer 10 and 11 observations and the dynamics of Jupiter’s atmosphere. Icarus, 29 , 245253.

  • Ingersoll, A. P., 1990: Atmosphere dynamics of the outer planets. Science, 248 , 308315.

  • Ingersoll, A. P., and C. C. Porco, 1978: Solar heating and internal heat flow on Jupiter. Icarus, 35 , 2743.

  • Ingersoll, A. P., G. Münch, G. Neugebauer, and G. S. Orton, 1976: Results of the infrared radiometer experiment on Pioneers 10 and 11. Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites, T. Gehrels, Ed., University of Arizona Press, 197–205.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., R. F. Beebe, J. L. Mitchell, G. W. Garneau, G. M. Yagi, and J. P. Müller, 1981: Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res., 86 , 87338743.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., and Coauthors, 2000: Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature, 403 , 630632.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., and Coauthors, 2004: Dynamics of Jupiter’s atmosphere. Jupiter: The Planet, Satellites and Magnetosphere, F. Bagenal, T. E. Dowling, and W. B. McKinnon, Eds., Cambridge University Press, 105–128.

    • Search Google Scholar
    • Export Citation
  • Jones, C. A., K. M. Kuzanyan, and R. H. Mitchell, 2009: Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech., 634 , 291319.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., G. R. Flierl, and A. P. Showman, 2009: The deep wind structure of the giant planets: Results from an anelastic general circulation model. Icarus, 202 , 525542.

    • Search Google Scholar
    • Export Citation
  • Levine, J. S., D. R. Kraemer, and W. R. Kuhn, 1977: Solar radiation incident on Mars and the outer planets: Latitudinal, seasonal, and atmospheric effects. Icarus, 31 , 136145.

    • Search Google Scholar
    • Export Citation
  • Lian, Y., and A. P. Showman, 2008: Deep jets on gas giant planets. Icarus, 194 , 597615.

  • Lian, Y., and A. P. Showman, 2010: Generation of equatorial jets by large-scale latent heating on giant planets. Icarus, 207 , 373393.

    • Search Google Scholar
    • Export Citation
  • Liu, J. J., P. M. Goldreich, and D. J. Stevenson, 2008: Constraints on deep seated zonal winds inside Jupiter and Saturn. Icarus, 196 , 653664.

    • Search Google Scholar
    • Export Citation
  • Lodders, K., and J. B. Fegley, 1998: The Planetary Scientist’s Companion. Oxford University Press, 400 pp.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Marcus, P. S., 1988: Numerical simulation of Jupiter’s Great Red Spot. Nature, 331 , 693696.

  • Marcus, P. S., 1993: Jupiter’s Great Red Spot and other vortices. Annu. Rev. Astron. Astrophys., 31 , 523573.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2542.

  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60 , 3765.

  • McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146 , 2143.

  • Nellis, W. J., S. T. Weir, and A. C. Mitchell, 1996: Metallization and electrical conductivity of hydrogen in Jupiter. Science, 273 , 936938.

    • Search Google Scholar
    • Export Citation
  • Nellis, W. J., N. C. Holmes, A. C. Mitchell, D. C. Hamilton, and M. Nicol, 1997: Equation of state and electrical conductivity of “synthetic Uranus,” a mixture of water, ammonia, and isopropanol, at shock pressure up to 200 GPa (2 Mbar). J. Chem. Phys., 107 , 90969100.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: Weather-layer dynamics of baroclinic eddies and multiple jets in an idealized general circulation model. J. Atmos. Sci., 65 , 524535.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 555 pp.

  • Porco, C. C., and Coauthors, 2003: Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299 , 15411547.

  • Read, P. L., P. J. Gierasch, B. J. Conrath, A. Simon-Miller, T. Fouchet, and Y. H. Yamazaki, 2006: Mapping potential vorticity dynamics on Jupiter. I. Zonal-mean circulation from Cassini and Voyager 1 data. Quart. J. Roy. Meteor. Soc., 132 , 15771603.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., B. J. Conrath, L. N. Fletcher, P. J. Gierasch, A. A. Simon-Miller, and L. C. Zuchowski, 2009: Mapping potential vorticity dynamics on Saturn: Zonal mean circulation from Cassini and Voyager data. Planet. Space Sci., 57 , 16821698.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1994: Jets. Chaos, 4 , 313339.

  • Salyk, C., A. P. Ingersoll, J. Lorre, A. Vasavada, and A. D. Del Genio, 2006: Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185 , 430442.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Lavega, A., S. Perez-Hoyos, J. F. Rojas, R. Hueso, and R. G. French, 2003: A strong decrease in Saturn’s equatorial jet at cloud level. Nature, 423 , 623625.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Lavega, A., R. Hueso, and S. Perez-Hoyos, 2007: The three-dimensional structure of Saturn’s equatorial jet at cloud level. Icarus, 187 , 510519.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2007: The thermal stratification of the extratropical troposphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 47–77.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and J. Liu, 2009: Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci., 66 , 579601.

  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63 , 15691586.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and L. M. Polvani, 2008: Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett., 35 , L24202. doi:10.1029/2008GL036060.

    • Search Google Scholar
    • Export Citation
  • Simon-Miller, A. A., B. J. Conrath, P. J. Gierasch, G. S. Orton, R. K. Achterberg, F. M. Flasar, and B. M. Fisher, 2006: Jupiter’s atmospheric temperatures: From Voyager IRIS to Cassini CIRS. Icarus, 180 , 98112.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469 , 1348.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Sromovsky, L. A., A. D. Collard, P. M. Fry, G. S. Orton, M. T. Lemmon, M. G. Tomasko, and R. S. Freedman, 1998: Galileo Probe measurements of thermal and solar radiation fluxes in the Jovian atmosphere. J. Geophys. Res., 103 , 2292922977.

    • Search Google Scholar
    • Export Citation
  • Sromovsky, L. A., P. M. Fry, T. E. Dowling, K. H. Baines, and S. S. Limaye, 2001: Coordinated 1996 HST and IRTF imaging of Neptune and Triton. III. Neptune’s atmospheric circulation and cloud structure. Icarus, 149 , 459488.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and R. Rotunno, 1989: Nonlinear aspects of symmetric instability. J. Atmos. Sci., 46 , 12851299.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 771 pp.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68 , 19351996.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1979: Planetary circulations: 2. The Jovian quasigeostrophic regime. J. Atmos. Sci., 36 , 932969.

  • Williams, G. P., 2003a: Barotropic instability and equatorial superrotation. J. Atmos. Sci., 60 , 21362152.

  • Williams, G. P., 2003b: Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. J. Atmos. Sci., 60 , 12701296.

  • Yamazaki, Y., P. Read, and D. Skeet, 2005: Hadley circulations and Kelvin wave–driven equatorial jets in the atmospheres of Jupiter and Saturn. Planet. Space Sci., 53 , 508525.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 823 230 14
PDF Downloads 407 82 7