On the Dynamics of Two-Dimensional Hurricane-Like Vortex Symmetrization

Y. Martinez Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Y. Martinez in
Current site
Google Scholar
PubMed
Close
,
G. Brunet Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by G. Brunet in
Current site
Google Scholar
PubMed
Close
, and
M. K. Yau Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite the fact that asymmetries in hurricanes, such as spiral rainbands, polygonal eyewalls, and mesovortices, have long been observed in radar and satellite imagery, many aspects of their origin, space–time structure, and dynamics still remain unsolved, particularly their role on the vortex intensification. The underlying inner-core dynamics need to be better understood to improve the science of hurricane intensity forecasting. To fill this gap, a simple 2D barotropic “dry” model is used to perform two experiments starting respectively with a monopole and a ring of enhanced vorticity to mimic hurricane-like vortices during incipient and mature stages of development. The empirical normal mode (ENM) technique, together with the Eliassen–Palm (EP) flux calculations, are used to isolate wave modes from the model datasets to investigate their space–time structure, kinematics, and the impact on the changes in the structure and intensity of the simulated hurricane-like vortices.

From the ENM diagnostics, it is shown in the first experiment how an incipient storm described by a vortex monopole intensifies by “inviscid damping” of a “discrete-like” vortex Rossby wave (VRW) or quasi mode. The critical radius, the structure, and the propagating properties of the quasi mode are found to be consistent with predictions of the linear eigenmode analysis of small perturbations. In the second experiment, the fastest growing wavenumber-4 unstable VRW modes of a vortex ring reminiscent of a mature hurricane are extracted, and their relation with the polygonal eyewalls, mesovortices, and the asymmetric eyewall contraction are established in consistency with results previously obtained from other authors.

Corresponding author address: Yosvany H. Martinez, Meteorological Research Division, Environment Canada, 2121 Transcanada Highway, No. 453, Dorval QC H9P 1J3, Canada. Email: yosvany.martinez@ec.gc.ca

Abstract

Despite the fact that asymmetries in hurricanes, such as spiral rainbands, polygonal eyewalls, and mesovortices, have long been observed in radar and satellite imagery, many aspects of their origin, space–time structure, and dynamics still remain unsolved, particularly their role on the vortex intensification. The underlying inner-core dynamics need to be better understood to improve the science of hurricane intensity forecasting. To fill this gap, a simple 2D barotropic “dry” model is used to perform two experiments starting respectively with a monopole and a ring of enhanced vorticity to mimic hurricane-like vortices during incipient and mature stages of development. The empirical normal mode (ENM) technique, together with the Eliassen–Palm (EP) flux calculations, are used to isolate wave modes from the model datasets to investigate their space–time structure, kinematics, and the impact on the changes in the structure and intensity of the simulated hurricane-like vortices.

From the ENM diagnostics, it is shown in the first experiment how an incipient storm described by a vortex monopole intensifies by “inviscid damping” of a “discrete-like” vortex Rossby wave (VRW) or quasi mode. The critical radius, the structure, and the propagating properties of the quasi mode are found to be consistent with predictions of the linear eigenmode analysis of small perturbations. In the second experiment, the fastest growing wavenumber-4 unstable VRW modes of a vortex ring reminiscent of a mature hurricane are extracted, and their relation with the polygonal eyewalls, mesovortices, and the asymmetric eyewall contraction are established in consistency with results previously obtained from other authors.

Corresponding author address: Yosvany H. Martinez, Meteorological Research Division, Environment Canada, 2121 Transcanada Highway, No. 453, Dorval QC H9P 1J3, Canada. Email: yosvany.martinez@ec.gc.ca

Save
  • Bartello, P., and T. Warn, 1996: Self-similarity of decaying two-dimensional turbulence. J. Fluid Mech., 326 , 357372.

  • Black, P. G., and F. D. Marks, 1991: The structure of a meso-vortex in Hurricane Hugo (1989). Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc, 579–582.

    • Search Google Scholar
    • Export Citation
  • Briggs, R. J., J. D. Daugherty, and R. H. Levy, 1970: Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluids, 13 , 421433.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., 1994: Empirical normal mode analysis of atmospheric data. J. Atmos. Sci., 51 , 932952.

  • Brunet, G., and P. H. Haynes, 1995: The nonlinear evolution of disturbances to a parabolic jet. J. Atmos. Sci., 52 , 464477.

  • Brunet, G., and R. Vautard, 1996: Empirical normal mode versus empirical orthogonal functions for statistical prediction. J. Atmos. Sci., 53 , 34683489.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., and M. T. Montgomery, 2002: Vortex Rossby waves on smooth circular vortices: Part I. Theory. Dyn. Atmos. Oceans, 35 , 173178.

    • Search Google Scholar
    • Export Citation
  • Challa, M., L. Pfeffer, Q. Zhao, and S. W. Chang, 1998: Can eddy fluxes serve as a catalyst for hurricane and typhoon formation? J. Atmos. Sci., 55 , 22012219.

    • Search Google Scholar
    • Export Citation
  • Charron, M., and G. Brunet, 1999: Gravity waves diagnosis using empirical normal modes. J. Atmos. Sci., 56 , 27062727.

  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60 , 12391256.

    • Search Google Scholar
    • Export Citation
  • Corngold, N. R., 1995: Linear response of the two-dimensional electron plasma: Quasimodes for some model profiles. Phys. Plasmas, 2 , 620628.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37 , 26002616.

    • Search Google Scholar
    • Export Citation
  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58 , 685706.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1986: The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn., 35 , 209233.

    • Search Google Scholar
    • Export Citation
  • Graves, L. P., J. C. McWilliams, and M. T. Montgomery, 2006: Vortex evolution due to straining: A mechanism for dominance of strong, interior anticyclones. Geophys. Astrophys. Fluid Dyn., 100 , 151183.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50 , 33803403.

  • Held, I. M., 1985: Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42 , 22802288.

  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110 , 723745.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and Coauthors, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87 , 15031521.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Lewis, B. M., and H. F. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. Bull. Amer. Meteor. Soc., 63 , 12941300.

  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Statistical Forecasting Project Sci. Rep. 1, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclones primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62 , 408425.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y. H., G. Brunet, and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J. Atmos. Sci., 67 , 32533268.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97 , 275309.

    • Search Google Scholar
    • Export Citation
  • Melander, M. V., J. C. McWilliams, and N. J. Zabusky, 1987: Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178 , 137159.

    • Search Google Scholar
    • Export Citation
  • Molinari, J. S., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity evolution. J. Atmos. Sci., 52 , 35933606.

    • Search Google Scholar
    • Export Citation
  • Molinari, J. S., S. Skubis, D. Vollaro, and F. Alsheimer, 1998: Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55 , 26322644.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and C. Lu, 1997: Free waves on barotropic vortices. Part I: Eigenmode structure. J. Atmos. Sci., 54 , 18681885.

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and G. Brunet, 2002: Vortex Rossby waves on smooth circular vortices: Part II. Idealized numerical experiments for tropical cyclone and polar vortex interiors. Dyn. Atmos. Oceans, 35 , 179204.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64 , 913921.

  • Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analysis of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56 , 12821307.

    • Search Google Scholar
    • Export Citation
  • Pillai, S., and R. W. Gould, 1994: Damping and trapping in 2D inviscid fluids. Phys. Rev. Lett., 73 , 2849.

  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58 , 23062330.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66 , 133147.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 1999: On the dynamics of inviscid relaxation in 2D fluids and nonneutral plasmas. Ph.D. thesis, University of California, San Diego, 177 pp.

  • Schecter, D. A., and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia-gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63 , 435456.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., D. H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T. M. O’Neil, 2000: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids, 12 , 23972412.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59 , 150168.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 1985: Wave, mean-flow interactions and hurricane development. Proc. 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 140–141.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50 , 33223335.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1990: Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Geophys. Fluid Dyn., 32 , 287338.

    • Search Google Scholar
    • Export Citation
  • Sirovich, L., and R. Everson, 1992: Management and analysis of large scientific datasets. Int. J. Supercomput. Appl., 6 , 5068.

  • Smith, R. A., and M. N. Rosenbluth, 1990: Algebraic instability of hollow electron columns and cylindrical vortices. Phys. Rev. Lett., 64 , 649652.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and N. V. Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135 , 13211335.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. L., and S. N. Rasband, 1997: Damped diocotron quasi-modes of non-neutral plasmas and inviscid fluids. Phys. Plasmas, 4 , 5360.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., 1989: Azimuthal waves and symmetrization of an intense vortex. Sov. Phys. Dokl., 34 , 104106.

  • Terwey, W. D., and M. T. Montgomery, 2002: Wavenumber-2 and wavenumber-m vortex Rossby wave instability in a generalized three-region model. J. Atmos. Sci., 59 , 24212427.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1978a: Possible mechanism for the formation of hurricane rain-bands. J. Atmos. Sci., 35 , 838848.

  • Willoughby, H. E., 1978b: The vertical structure of hurricane rainbands and their interaction with the mean vortex. J. Atmos. Sci., 35 , 849858.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990a: Temporal changes in the primary circulation in tropical cyclones. J. Atmos. Sci., 47 , 242264.

  • Willoughby, H. E., 1990b: Gradient balance in tropical cyclones. J. Atmos. Sci., 47 , 265274.

  • Willoughby, H. E., 1990c: Linear normal modes of a shallow-water barotropic vortex. J. Atmos. Sci., 47 , 21412148.

  • Zadra, A., G. Brunet, and J. Derome, 2002: An empirical normal mode diagnostic algorithm applied to NCEP reanalysis. J. Atmos. Sci., 59 , 28112829.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 266 95 9
PDF Downloads 115 50 3