Uncertainties in Microwave Properties of Frozen Precipitation: Implications for Remote Sensing and Data Assimilation

Mark S. Kulie Department of Atmospheric and Oceanic Science, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Mark S. Kulie in
Current site
Google Scholar
PubMed
Close
,
Ralf Bennartz Department of Atmospheric and Oceanic Science, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Ralf Bennartz in
Current site
Google Scholar
PubMed
Close
,
Thomas J. Greenwald Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Thomas J. Greenwald in
Current site
Google Scholar
PubMed
Close
,
Yong Chen Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

Search for other papers by Yong Chen in
Current site
Google Scholar
PubMed
Close
, and
Fuzhong Weng NOAA/NESDIS/Office of Research and Applications, and Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

Search for other papers by Fuzhong Weng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A combined active/passive modeling system that converts CloudSat observations to simulated microwave brightness temperatures (TB) is used to assess different ice particle models under precipitating conditions. Simulation results indicate that certain ice models (e.g., low-density spheres) produce excessive scattering and implausibly low simulated TBs for stratiform precipitation events owing to excessive derived ice water paths (IWPs), while other ice models produce unphysical TB depressions due to the combined effects of elevated derived IWP and excessive particle size distribution–averaged extinction. An ensemble of nonspherical ice particle models, however, consistently produces realistic results under most circumstances and adequately captures the radiative properties of frozen hydrometeors associated with precipitation—with the possible exception of very high IWP events. Large derived IWP uncertainties exceeding 60% are also noted and may indicate IWP retrieval accuracy deficiencies using high-frequency passive microwave observations. Simulated TB uncertainties due to the ice particle model ensemble members approach 9 (5) K at 89 (157) GHz for high ice water path conditions associated with snowfall and ∼2–3 (∼1–2) K under typical stratiform rain conditions. These uncertainties, however, display considerable variability owing to ice water path, precipitation type, satellite zenith angle, and frequency. Comparisons between 157-GHz simulations and observations under precipitating conditions produce low biases (<1.5 K) and high correlations, but lower-frequency channels display consistent negative biases of 3–4 K in precipitating regions. Sample error correlations and covariance matrices for select microwave frequencies also show strong functional relationships with ice water path and variability depending on precipitation type.

Corresponding author address: Mark S. Kulie, Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. Email: mskulie@wisc.edu

Abstract

A combined active/passive modeling system that converts CloudSat observations to simulated microwave brightness temperatures (TB) is used to assess different ice particle models under precipitating conditions. Simulation results indicate that certain ice models (e.g., low-density spheres) produce excessive scattering and implausibly low simulated TBs for stratiform precipitation events owing to excessive derived ice water paths (IWPs), while other ice models produce unphysical TB depressions due to the combined effects of elevated derived IWP and excessive particle size distribution–averaged extinction. An ensemble of nonspherical ice particle models, however, consistently produces realistic results under most circumstances and adequately captures the radiative properties of frozen hydrometeors associated with precipitation—with the possible exception of very high IWP events. Large derived IWP uncertainties exceeding 60% are also noted and may indicate IWP retrieval accuracy deficiencies using high-frequency passive microwave observations. Simulated TB uncertainties due to the ice particle model ensemble members approach 9 (5) K at 89 (157) GHz for high ice water path conditions associated with snowfall and ∼2–3 (∼1–2) K under typical stratiform rain conditions. These uncertainties, however, display considerable variability owing to ice water path, precipitation type, satellite zenith angle, and frequency. Comparisons between 157-GHz simulations and observations under precipitating conditions produce low biases (<1.5 K) and high correlations, but lower-frequency channels display consistent negative biases of 3–4 K in precipitating regions. Sample error correlations and covariance matrices for select microwave frequencies also show strong functional relationships with ice water path and variability depending on precipitation type.

Corresponding author address: Mark S. Kulie, Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. Email: mskulie@wisc.edu

Save
  • Ashcroft, P., and F. Wentz, 2006: updated daily. AMSR-E/Aqua L2A global swath spatially resampled brightness temperatures V002, July 2006–January 2007. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/ae_l2a.html].

    • Search Google Scholar
    • Export Citation
  • Austin, R., 2007: CloudSat ECMWF-AUX auxiliary data process description and interface control document, version 5.2. CloudSat Data Processing Center. [Available online at http://www.cloudsat.cira.colostate.edu/ICD/2B-CWC-RO/2B-CWC-RO_PD_5.1.pdf].

    • Search Google Scholar
    • Export Citation
  • Bauer, P., J. P. V. Poiares Baptista, and M. de Iulis, 1999: The effect of the melting layer on the microwave emission of clouds over the ocean. J. Atmos. Sci., 56 , 852867.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, A. Benedetti, D. Salmond, and E. Moreau, 2006a: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1D-Var. Quart. J. Roy. Meteor. Soc., 132 , 22772306.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, A. Benedetti, D. Salmond, S. Saarinen, and M. Bonazzola, 2006b: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances in precipitation at ECMWF. II: 4D-Var. Quart. J. Roy. Meteor. Soc., 132 , 23072332.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40 , 345364.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38 , 8075. doi:10.1029/2002RS002626.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., F. Weng, Y. Han, and Q. Liu, 2008: Validation of the community radiative transfer model by using CloudSat data. J. Geophys. Res., 113 , D00A03. doi:10.1029/2007JD009561.

    • Search Google Scholar
    • Export Citation
  • DeBlonde, G., and S. J. English, 2001: Evaluation of the FASTEM-2 fast microwave oceanic surface emissivity model. Tech. Proc. ITSC-XI, Budapest, Hungary, WMO, 67–78.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A , 14911499.

  • Ellis, T. D., T. L’Ecuyer, J. M. Haynes, and G. L. Stephens, 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36 , L03815. doi:10.1029/2008GL036728.

    • Search Google Scholar
    • Export Citation
  • English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders, and J. R. Eyre, 2000: A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteor. Soc., 126 , 29112931.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., P. Bauer, and J. Mahfouf, 2007a: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64 , 37853798.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., G. Ohring, P. Bauer, B. Ferrier, J. Mahfouf, J. Turk, and F. Weng, 2007b: Assimilation of satellite cloud and precipitation observations in numerical weather prediction models: Introduction to the JAS special collection. J. Atmos. Sci., 64 , 37373741.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., 2007: SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation. J. Atmos. Sci., 64 , 38543864.

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor.Soc., 131 , 19972017. doi:10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64 , 43464365.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T., R. Bennartz, C. O’Dell, and A. Heidinger, 2005: Fast computation of microwave radiances for data assimilation using the “successive order of scattering” method. J. Appl. Meteor., 44 , 960966.

    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: Community Radiative Transfer Model (CRTM): Version 1. NOAA Tech. Rep. 122, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., C. O’Dell, R. Bennartz, and T. Greenwald, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45 , 13881402.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). J. Appl. Meteor. Climatol., 47 , 778794.

    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007: Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies. J. Geophys. Res., 112 , D11208. doi:10.1029/2006JD008364.

    • Search Google Scholar
    • Export Citation
  • Kawanishi, T., and Coauthors, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E): NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41 , 184194. doi:10.1109/TGRS.2002.808331.

    • Search Google Scholar
    • Export Citation
  • Kelly, G. A., P. Bauer, A. J. Geer, P. Lopez, and J. Thépaut, 2008: Impact of SSM/I observations related to moisture, clouds, and precipitation on global NWP forecast skill. Mon. Wea. Rev., 136 , 27132726.

    • Search Google Scholar
    • Export Citation
  • Kim, M-J., M. S. Kulie, C. O’Dell, and R. Bennartz, 2007: Scattering of ice particles at microwave frequencies: A physically based parameterization. J. Appl. Meteor. Climatol., 46 , 615633.

    • Search Google Scholar
    • Export Citation
  • Kongoli, C., P. Pellegrino, R. Ferraro, N. Grody, and H. Meng, 2003: A new snowfall detection algorithm over land using measurements from the Advanced Microwave Sounding Unit (AMSU). Geophys. Res. Lett., 30 , 1756. doi:10.1029/2003GL017177.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and R. Bennartz, 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor., 48 , 25642580.

  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41 , 272285.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12 , 659675.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22 , 767779.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89 , 15631570.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and F. Weng, 2006: Advanced doubling–adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci., 63 , 34593465.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Mahfouf, J. F., P. Bauer, and V. Marécal, 2005: The assimilation of SSM/I and TMI rainfall rates in the ECMWF 4D-Var system. Quart. J. Roy. Meteor. Soc., 131 , 437458. doi:10.1256/qj.04.17.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and A. Battaglia, 2009: Influence of multiple scattering on CloudSat measurements in snow: A model study. Geophys. Res. Lett., 36 , L12806. doi:10.1029/2009GL038704.

    • Search Google Scholar
    • Export Citation
  • McCollum, J., and R. Ferraro, 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108 , 8382. doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., A. K. Heidinger, T. Greenwald, P. Bauer, and R. Bennartz, 2006: The successive-order-of-interaction radiative transfer model. Part II: Model performance and applications. J. Appl. Meteor. Climatol., 45 , 14031413.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21 , 17211739.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indexes. Meteor. Atmos. Phys., 54 , 7999.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67 , 769787.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33 , 919928.

    • Search Google Scholar
    • Export Citation
  • Sassen, K. S., S. Matrosov, and J. Campbell, 2007: CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog. Geophys. Res. Lett., 34 , L16818. doi:10.1029/2007GL030291.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and D. H. Staelin, 2006: Comparison of AMSU millimeter-wave satellite observations, MM5/TBSCAT predicted radiances, and electromagnetic models for hydrometeors. IEEE Trans. Geosci. Remote Sens., 44 , 26672678. doi:10.1109/TGRS.2006.873275.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46 , 35603573.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136 , 50955115.

    • Search Google Scholar
    • Export Citation
  • Weng, F., N. C. Grody, R. Ferraro, A. Basist, and D. Forsyth, 1997: Cloud liquid water climatology from the Special Sensor Microwave/Imager. J. Climate, 10 , 10861098.

    • Search Google Scholar
    • Export Citation
  • Weng, F., T. Zhu, and B. Yan, 2007: Satellite data assimilation in numerical weather prediction models. Part II: Uses of rain-affected radiances from microwave observations for hurricane vortex analysis. J. Atmos. Sci., 64 , 39103925.

    • Search Google Scholar
    • Export Citation
  • Wentz, F., and T. Meissner, 2004: updated daily. AMSR-E/Aqua L2B global swath ocean products derived from Wentz algorithm V002, July 2006–January 2007. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/ae_ocean.html].

    • Search Google Scholar
    • Export Citation
  • Zhao, L. M., and F. Z. Weng, 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. J. Appl. Meteor., 41 , 384395.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 874 326 16
PDF Downloads 487 159 9