A Mixed Scheme for Subgrid-Scale Fluxes in Cloud-Resolving Models

C.-H. Moeng National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by C.-H. Moeng in
Current site
Google Scholar
PubMed
Close
,
P. P. Sullivan National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by P. P. Sullivan in
Current site
Google Scholar
PubMed
Close
,
M. F. Khairoutdinov Stony Brook University, Stony Brook, New York

Search for other papers by M. F. Khairoutdinov in
Current site
Google Scholar
PubMed
Close
, and
D. A. Randall Colorado State University, Fort Collins, Colorado

Search for other papers by D. A. Randall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large-domain large-eddy simulation of a tropical deep convection system is used as a benchmark to derive and test a mixed subgrid-scale (SGS) scheme for scalar and momentum fluxes in cloud-resolving models (CRMs). The benchmark simulation resolves a broad range of scales ranging from mesoscale organizations, through gravity waves and individual clouds, down to energy-containing turbulent eddies. A spectral analysis shows that the vertical-velocity kinetic energy peaks at scales from hundreds of meters in the lower cloud layer to several kilometers higher up; these scales are typical grid sizes of today’s CRMs. The analysis also shows that a significant portion of the scalar and momentum fluxes in the benchmark simulation are carried by motions smaller than several kilometers (i.e., smaller than a typical grid resolution of CRMs). The broad range of scales of the benchmark simulation is split into two components: filter scale (mimicking CRM resolvable scale) and subfilter scale (mimicking CRM SGS), using filter widths characteristic of a typical CRM grid spacing. The local relationship of the subfilter-scale fluxes to the filter-scale variables is examined. This leads to a mixed SGS scheme to represent the SGS fluxes of scalars and momentum in CRMs. A priori tests show that the mixed SGS scheme yields spatial distributions of subfilter-scale fluxes that correlate much better with those retrieved from the benchmark when compared with an eddy viscosity/diffusivity scheme that is commonly used in today’s CRMs.

Corresponding author address: Dr. Chin-Hoh Moeng, MMM Division, NCAR, P.O. Box 3000, Boulder, CO 80307–3000. Email: moeng@ucar.edu

Abstract

A large-domain large-eddy simulation of a tropical deep convection system is used as a benchmark to derive and test a mixed subgrid-scale (SGS) scheme for scalar and momentum fluxes in cloud-resolving models (CRMs). The benchmark simulation resolves a broad range of scales ranging from mesoscale organizations, through gravity waves and individual clouds, down to energy-containing turbulent eddies. A spectral analysis shows that the vertical-velocity kinetic energy peaks at scales from hundreds of meters in the lower cloud layer to several kilometers higher up; these scales are typical grid sizes of today’s CRMs. The analysis also shows that a significant portion of the scalar and momentum fluxes in the benchmark simulation are carried by motions smaller than several kilometers (i.e., smaller than a typical grid resolution of CRMs). The broad range of scales of the benchmark simulation is split into two components: filter scale (mimicking CRM resolvable scale) and subfilter scale (mimicking CRM SGS), using filter widths characteristic of a typical CRM grid spacing. The local relationship of the subfilter-scale fluxes to the filter-scale variables is examined. This leads to a mixed SGS scheme to represent the SGS fluxes of scalars and momentum in CRMs. A priori tests show that the mixed SGS scheme yields spatial distributions of subfilter-scale fluxes that correlate much better with those retrieved from the benchmark when compared with an eddy viscosity/diffusivity scheme that is commonly used in today’s CRMs.

Corresponding author address: Dr. Chin-Hoh Moeng, MMM Division, NCAR, P.O. Box 3000, Boulder, CO 80307–3000. Email: moeng@ucar.edu

Save
  • Bardina, J., J. H. Ferziger, and W. C. Reynolds, 1980: Improved subgrid-scale models for large-eddy simulation. American Institute for Aeronautics and Astronautics Paper 80-1357, 10 pp.

    • Search Google Scholar
    • Export Citation
  • Carati, D., G. S. Winckelmans, and H. Jeanmart, 2001: On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech., 441 , 119138.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62 , 20582077.

    • Search Google Scholar
    • Export Citation
  • Clark, R. A., J. H. Ferziger, and W. C. Reynolds, 1979: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech., 91 , 116.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Germano, M., 1986: A proposal for a redefinition of the turbulent stresses in the filtered Navier–Stokes equations. Phys. Fluids, 29 , 23232324.

    • Search Google Scholar
    • Export Citation
  • Gullbrand, J., and F. K. Chow, 2003: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech., 495 , 323341.

    • Search Google Scholar
    • Export Citation
  • Hatlee, S. C., and J. C. Wyngaard, 2007: Improved subfilter-scale models from the HATS field data. J. Atmos. Sci., 64 , 16941705.

  • Horst, T. W., J. Kleissl, D. H. Lenschow, C. Meneveau, C-H. Moeng, M. B. Parlange, P. P. Sullivan, and J. C. Weil, 2004: HATS: Field observations to obtain spatially filtered turbulence fields from crosswind arrays of sonic anemometers in the atmospheric surface layer. J. Atmos. Sci., 61 , 15661581.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607625.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., S. K. Krueger, C-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 , 15. doi:10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Kosovic, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336 , 151182.

    • Search Google Scholar
    • Export Citation
  • Leonard, A., 1974: Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, Vol. 18, Academic Press, 237–248.

    • Search Google Scholar
    • Export Citation
  • Leonard, A., 1997: Large-eddy simulation of chaotic convection and beyond. Proc. 35th Aerospace Sciences Meeting, Reno, NV, American Institute for Aeronautics and Astronautics Paper 97–0204.

    • Search Google Scholar
    • Export Citation
  • Liu, S., J. Katz, and C. Meneveau, 1999: Evolution and modelling of subgrid scales during rapid straining of turbulence. J. Fluid Mech., 387 , 281320.

    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32 , 132.

  • Moeng, C-H., M. A. LeMone, M. F. Khairoutdinov, S. K. Krueger, P. A. Bogenschutz, and D. A. Randall, 2009: The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. J. Adv. Model. Earth Syst., 1 , 16. doi:10.3894/JAMES.2009.1.16.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., 2001: Further comments on “The differentiation between grid spacing and resolution and their application to numerical modeling”. Bull. Amer. Meteor. Soc., 82 , 699700.

    • Search Google Scholar
    • Export Citation
  • Piomelli, U., P. Moin, and J. H. Ferziger, 1988: Model consistency in large eddy simulation of turbulent channel flows. Phys. Fluids, 31 , 18841891.

    • Search Google Scholar
    • Export Citation
  • Stolz, S., N. A. Adams, and L. Kleiser, 2001: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids, 13 , 9971015.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71 , 247276.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C-H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482 , 101139.

    • Search Google Scholar
    • Export Citation
  • Tong, C., J. C. Wyngaard, S. Khanna, and J. G. Brasseur, 1998: Resolvable- and subgrid-scale measurement in the atmospheric surface layer: The technique and issues. J. Atmos. Sci., 55 , 31143126.

    • Search Google Scholar
    • Export Citation
  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids, 5A , 31863196.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., J. G. Brasseur, and A. Juneja, 2001: A resolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence. Phys. Fluids, 13 , 26022610.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 798 250 14
PDF Downloads 602 219 9