Abstract
A large-domain large-eddy simulation of a tropical deep convection system is used as a benchmark to derive and test a mixed subgrid-scale (SGS) scheme for scalar and momentum fluxes in cloud-resolving models (CRMs). The benchmark simulation resolves a broad range of scales ranging from mesoscale organizations, through gravity waves and individual clouds, down to energy-containing turbulent eddies. A spectral analysis shows that the vertical-velocity kinetic energy peaks at scales from hundreds of meters in the lower cloud layer to several kilometers higher up; these scales are typical grid sizes of today’s CRMs. The analysis also shows that a significant portion of the scalar and momentum fluxes in the benchmark simulation are carried by motions smaller than several kilometers (i.e., smaller than a typical grid resolution of CRMs). The broad range of scales of the benchmark simulation is split into two components: filter scale (mimicking CRM resolvable scale) and subfilter scale (mimicking CRM SGS), using filter widths characteristic of a typical CRM grid spacing. The local relationship of the subfilter-scale fluxes to the filter-scale variables is examined. This leads to a mixed SGS scheme to represent the SGS fluxes of scalars and momentum in CRMs. A priori tests show that the mixed SGS scheme yields spatial distributions of subfilter-scale fluxes that correlate much better with those retrieved from the benchmark when compared with an eddy viscosity/diffusivity scheme that is commonly used in today’s CRMs.
Corresponding author address: Dr. Chin-Hoh Moeng, MMM Division, NCAR, P.O. Box 3000, Boulder, CO 80307–3000. Email: moeng@ucar.edu