• Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud-top dynamics as inferred from satellite observations and a cloud-top parcel model. J. Atmos. Sci., 43 , 19451960.

    • Search Google Scholar
    • Export Citation
  • Anderson, N. F., C. A. Grainger, and J. L. Stith, 2005: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44 , 731738.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33 , 851864.

  • Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler analysis. J. Atmos. Oceanic Technol., 2 , 468471.

  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53 , 18871909.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., R. A. Black, J. Hallett, and W. A. Lyons, 1986: Electrical activity on the hurricane. Preprints, 23rd Conf. on Radar Meteorology, Snomass, CO, Amer. Meteor. Soc., J277–J280.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., G. M. Heymsfield, and J. Hallett, 2003: Extra large particle images at 12 km in a hurricane eyewall: Evidence of high-altitude supercooled water? Geophys. Res. Lett., 30 , 2124. doi:10.1029/2003GL017864.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley, 530 pp.

  • Braun, S. A., and W-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128 , 39413961.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Bocippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. M. Simpson, M. A. LeMone, J. M. Straka, and B. F. Smull, 2009: On how hot towers fuel the Hadley cell: An observational and modeling study of line-organized convection in the equatorial trough from TOGA COARE. J. Atmos. Sci., 66 , 27302746.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., G. M. Heymsfield, L. Tian, J. B. Halverson, A. Guillory, and M. I. Mejia, 2000: Hurricane Georges’s landfall in the Dominican Republic: Detailed airborne Doppler radar imagery. Bull. Amer. Meteor. Soc., 81 , 9991018.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multi-scale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes Experiment: Investigating tropical cyclogenesis and hurricane intensity change. Bull. Amer. Meteor. Soc., 88 , 867882.

    • Search Google Scholar
    • Export Citation
  • Herman, R. L., and A. J. Heymsfield, 2003: Aircraft icing at low temperatures in Tropical Storm Chantal (2001). Geophys. Res. Lett., 30 , 1955. doi:10.1029/2003GL017746.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61 , 9821003.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., L. M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M. R. Poellot, A. Fridland, and H. Gerber, 2005: Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62 , 4164.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°C. J. Atmos. Sci., 66 , 35303562.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., 1989: Accuracy of vertical air motions from nadir-viewing Doppler airborne radars. J. Atmos. Oceanic Technol., 6 , 10791082.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and S. Schotz, 1985: Structure and evolution of a severe squall line over Oklahoma. Mon. Wea. Rev., 113 , 15631589.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., R. Fulton, and J. Spinhirne, 1991: Aircraft overflight measurements of Midwest severe thunderstorms: Implications of geosynchronous satellite interpretations. Mon. Wea. Rev., 119 , 436456.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13 , 795809.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, and I. J. Caylor, 1999: A wintertime Gulf coast squall line observed by EDOP airborne Doppler radar. Mon. Wea. Rev., 127 , 29282950.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., B. Geerts, and L. Tian, 2000: TRMM precipitation radar reflectivity profiles as compared with high-resolution airborne and ground-based measurements. J. Appl. Meteor., 39 , 20802102.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and P. Bui, 2001: ER-2 Doppler radar (EDOP) investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 13101330.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. Halverson, E. Ritchie, J. Simpson, J. Molinari, and L. Tian, 2006: Structure of highly sheared Tropical Storm Chantal during CAMEX-4. J. Atmos. Sci., 63 , 268287.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., W-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137 , 27782800.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11 , 15071516.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35 , L08815. doi:10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., D. Starr, and O. Toon, 2004: Mission investigates tropical cirrus clouds. Eos, Trans. Amer. Geophys. Union, 85 , 4550.

  • Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133 , 131148.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of structure, circulation, and surface energy fluxes. J. Atmos. Sci., 54 , 19611985.

    • Search Google Scholar
    • Export Citation
  • Kakar, R., M. Goodman, R. Hood, and A. Guillory, 2006: Overview of the Convection and Moisture Experiment (CAMEX). J. Atmos. Sci., 63 , 518.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40 , 15101516.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64 , 11411164.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37 , 24442457.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., T. Y. Chang, and C. Lucas, 1994: On the effects of filtering on convective-core statistics. J. Atmos. Sci., 51 , 33443350.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110 , D23104. doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., M. A. LeMone, and E. J. Zipser, 1994a: Convective available potential energy in the environment of oceanic and continental clouds: Correction and comments. J. Atmos. Sci., 51 , 38293830.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., M. A. LeMone, and E. J. Zipser, 1994b: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44 , 12961317.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127 , 10561071.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62 , 16371644.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14 , 35663586.

    • Search Google Scholar
    • Export Citation
  • Pflaum, J. C., and H. R. Pruppacher, 1979: A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36 , 680689.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett., 27 , 25132516.

  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97 , 471489.

  • Simpson, J., C. Kummerow, W-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., J. B. Halverson, B. S. Ferrier, W. A. Petersen, R. H. Simpson, R. Blakeslee, and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67 , 1535.

    • Search Google Scholar
    • Export Citation
  • Smith, P., 1984: Equivalent radar reflectivity factor for snow and ice particles. J. Climate Appl. Meteor., 23 , 12581260.

  • Starr, D. O’C., 2008: Probing the mysteries of the tropopause transition layer: The TC4 experiment. Earth Observer, No. 20 (3), EOS Project Science Office, Greenbelt, MD, 22–27. [Available online at http://eospso.gsfc.nasa.gov/eos_observ/pdf/May_Jun_08.pdf].

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41 , 97117.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43 , 779794.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., 4 , 9194.

  • Sun, J., S. Braun, M. I. Biggerstaff, R. G. Fovell, and R. A. Houze Jr., 1994: Warm upper-level downdrafts associated with a squall line. Mon. Wea. Rev., 121 , 29192927.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43 , 182198.

    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, and R. C. Srivastava, 2002: Measurements of attenuation with airborne and ground-based radar in convective storm over land and its microphysical implications. J. Appl. Meteor., 41 , 716733.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and P. B. Chilson, 1994: Effects of variations in precipitation size distribution and fall speed law parameters on relations between mean Doppler fall speed and reflectivity factor. J. Atmos. Oceanic Technol., 11 , 16561663.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some view on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the TRMM. Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87 , 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 836 513 24
PDF Downloads 376 180 20

Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

Gerald M. HeymsfieldNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Lin TianGEST, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
,
Andrew J. HeymsfieldNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Lihua LiNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Lihua Li in
Current site
Google Scholar
PubMed
Close
, and
Stephen GuimondDepartment of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by Stephen Guimond in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m s−1, with a few exceeding 30 m s−1, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

Corresponding author address: Gerald M. Heymsfield, Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: gerald.heymsfield@nasa.gov

This article is included in the TCSP NAMMA special collection.

Abstract

This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m s−1, with a few exceeding 30 m s−1, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

Corresponding author address: Gerald M. Heymsfield, Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: gerald.heymsfield@nasa.gov

This article is included in the TCSP NAMMA special collection.

Save