• Abraham, F. F., 1962: Evaporation of raindrops. J. Geophys. Res., 67 , 46734682.

  • Abraham, F. F., 1968: A physical interpretation of the structure of the ventilation coefficients for freely falling waterdrops. J. Atmos. Sci., 25 , 7681.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. R. Pruppacher, 1971: A wind tunnel investigation of the rate of evaporation of small drops falling at terminal velocity in air. J. Atmos. Sci., 28 , 14551464.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., and D. Guédalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122 , 12181230.

    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1952: The evaporation of raindrops. Quart. J. Roy. Meteor. Soc., 78 , 200225.

  • Brown, P. S., 1993: Analysis and parameterization of the combined coalescence, breakup, and evaporation processes. J. Atmos. Sci., 50 , 29402951.

    • Search Google Scholar
    • Export Citation
  • Brown, R., and W. T. Roach, 1976: The physics of radiation fog: II—A numerical study. Quart. J. Roy. Meteor. Soc., 102 , 335354.

  • Buck, A. L., 1981: New equations for calculating vapor pressure and enhancement factor. J. Appl. Meteor., 20 , 15271532.

  • Byers, H. R., 1959: General Meteorology. McGraw-Hill, 481 pp.

  • Caplan, P. M., 1966: On the evaporation of raindrops in the presence of vertical gradients of temperature and relative humidity. J. Atmos. Sci., 23 , 614617.

    • Search Google Scholar
    • Export Citation
  • Chang, R., and E. J. Davis, 1974: Interfacial conditions and evaporation rates of a liquid droplet. J. Colloid Interface Sci., 47 , 6576.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117 , 10571080.

    • Search Google Scholar
    • Export Citation
  • Cohard, J-M., and J-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126 , 18151842.

    • Search Google Scholar
    • Export Citation
  • Croft, P. J., and A. N. Burton, 2006: Fog during the 2004–2005 winter season in the northern mid-Atlantic states: Spatial characteristics and behaviors as a function of synoptic weather types. Proceedings, 12th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., P3.3. [Available online at http://ams.confex.com/ams/pdfpapers/97843.pdf].

    • Search Google Scholar
    • Export Citation
  • Dolezel, E. J., 1944: Saturation and cooling of air layers by evaporation from falling rain. J. Meteor., 1 , 8997.

  • Donaldson, N. R., and R. E. Stewart, 1993: Fog induced by mixed-phase precipitation. Atmos. Res., 29 , 925.

  • Dotzek, N., and K. D. Beheng, 2001: The influence of deep convective motions on the variability of Z–R relations. Atmos. Res., 59 , 1539.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., 1993: Parameterization of the evaporation of rainfall for use in general circulation models. J. Atmos. Sci., 50 , 34543467.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Foote, G. B., and P. S. du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8 , 249253.

  • George, J. J., 1940a: Fog: Its causes and forecasting with special reference to eastern and southern United States (I). Bull. Amer. Meteor. Soc., 21 , 135148.

    • Search Google Scholar
    • Export Citation
  • George, J. J., 1940b: Fog: Its causes and forecasting with special reference to eastern and southern United States (II). Bull. Amer. Meteor. Soc., 21 , 261269.

    • Search Google Scholar
    • Export Citation
  • George, J. J., 1940c: Fog: Its causes and forecasting with special reference to eastern and southern United States (III). Bull. Amer. Meteor. Soc., 21 , 285291.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1991: Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci., 48 , 25692588.

  • Goldman, L., 1951: On forecasting ceiling lowering during continuous rain. Mon. Wea. Rev., 79 , 133142.

  • Gregory, D., 1995: A consistent treatment of the evaporation of rain and snow for use in large-scale models. Mon. Wea. Rev., 123 , 27162732.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: Survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33 , 19952006.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52 , 17611783.

    • Search Google Scholar
    • Export Citation
  • Iwai, K., and M. Kato, 1998: Thermal relaxation times of waterdrops with radii larger than 1.7 mm falling at terminal velocity in air. J. Meteor. Soc. Japan, 76 , 10651069.

    • Search Google Scholar
    • Export Citation
  • Jiusto, J. E., 1981: Fog structure. Clouds: Their Formation, Optical Properties and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 495 pp.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Kinzer, G. D., and R. Gunn, 1951: The evaporation, temperature and thermal relaxation time of freely falling waterdrops. J. Meteor., 8 , 7183.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57 , 16751685.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and N. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Mätzler, C., 2002: Drop-Size Distributions and Mie Computations for Rain. Institute of Applied Physics Research Rep. 2002-16, University of Bern, Bern, Switzerland, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1969: Introduction to Meteorology. 3rd ed. McGraw-Hill, 333 pp.

  • Posselt, R., and U. Lohmann, 2008: Introduction of prognostic rain in ECHAM5: Design and single column model simulations. Atmos. Chem. Phys., 8 , 29492963.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. Rasmussen, 1979: A wind tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmos. Sci., 36 , 12551260.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer, 954 pp.

  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59 , 837860.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Richtmyer, R. D., and K. W. Morton, 1967: Difference Methods for Initial-Value Problems. Wiley-Interscience, 405 pp.

  • Roach, W. T. R., 1976: On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Quart. J. Roy. Meteor. Soc., 102 , 361372.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Schlesinger, M. E., J-H. Oh, and D. Rosenfeld, 1988: A parameterization of the evaporation of rainfall. Mon. Wea. Rev., 116 , 18871895.

    • Search Google Scholar
    • Export Citation
  • Sedunov, Y. U., 1974: Physics of Drop Formation in the Atmosphere. John Wiley, 234 pp.

  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42 , 10041023.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., and J. L. Coen, 1992: New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor. J. Atmos. Sci., 49 , 16431651.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1992: Precipitation types in the transition region of winter storms. Bull. Amer. Meteor. Soc., 73 , 287296.

  • Stewart, R. E., and D. T. Yiu, 1993: Distributions of precipitation and associated parameters across precipitation type transitions over southern Ontario. Atmos. Res., 29 , 153178.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., D. T. Yiu, K. K. Chung, D. R. Hudak, E. P. Lozowski, M. Oleskiw, B. E. Sheppard, and K. K. Szeto, 1995: Weather conditions associated with the passage of precipitation type transition regions over eastern Newfoundland. Atmos.–Ocean, 33 , 2553.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and M. S. Gilmore, 2006: Does the influence of oblate-like distortions in larger raindrops make a difference in collection and evaporation parameterizations? J. Appl. Meteor. Climatol., 45 , 15821591.

    • Search Google Scholar
    • Export Citation
  • Syono, S., and T. Takeda, 1962: On the evaporation of raindrops in a sub-cloud layer. J. Meteor. Soc. Japan, 40 , 245265.

  • Tardif, R., 2007: Characterizing fog and the physical mechanisms leading to its formation during precipitation in a coastal area of the northeastern United States. Ph.D. dissertation, University of Colorado, 400 pp.

  • Tardif, R., and R. M. Rasmussen, 2007: Event-based climatology and typology of fog in the New York City region. J. Appl. Meteor. Climatol., 46 , 11411168.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., and R. M. Rasmussen, 2008: Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. J. Appl. Meteor. Climatol., 47 , 16811703.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Ware, R., F. Solheim, R. Carpenter, J. Güldner, J. Liljegren, T. Nehrkorn, and F. Vandenberghe, 2003: A multi-channel radiometric profiler of temperature, humidity and cloud liquid. Radio Sci., 38 , 8079. doi:10.1029/2002RS002856.

    • Search Google Scholar
    • Export Citation
  • Watts, R. G., and I. Farhi, 1975: Relaxation times for stationary evaporating liquid droplets. J. Atmos. Sci., 32 , 18641867.

  • Westcott, N., 2004: Synoptic conditions associated with dense fog in the Midwest. Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., P2.4. [Available online at http://ams.confex.com/ams/pdfpapers/72954.pdf].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 86 5
PDF Downloads 180 63 1

Evaporation of Nonequilibrium Raindrops as a Fog Formation Mechanism

Robert TardifResearch Applications Laboratory, National Center for Atmospheric Research, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Robert Tardif in
Current site
Google Scholar
PubMed
Close
and
Roy M. RasmussenResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To gain insights into the poorly understood phenomenon of precipitation fog, this study assesses the evaporation of freely falling drops departing from equilibrium as a possible contributing factor to fog formation in rainy conditions. The study is based on simulations performed with a microphysical column model describing the evolution of the temperature and mass of evaporating raindrops within a Lagrangian reference frame. Equilibrium defines a state where the latent heat loss of an evaporating drop is balanced by the sensible heat flux from the ambient air, hence defining a steady-state drop temperature. Model results show that the assumption of equilibrium leads to small but significant errors in calculated precipitation evaporation rates for drops falling in continuously varying ambient near-saturated or saturated conditions. Departure from equilibrium depends on the magnitude of the vertical gradients of the ambient temperature and moisture as well as the drop-size-dependent terminal velocity. Contrasting patterns of behavior occur depending on the stratification of the atmosphere. Raindrops falling in inversion layers remain warmer than the equilibrium temperature and lead to enhanced moistening, with supersaturation achieved when evaporation proceeds in saturated inversions. Dehydration occurs in layers with temperature and water vapor increasing with height due to the vapor flux from the environment to the colder drops. These contrasts are not represented when equilibrium is assumed. The role of nonequilibrium raindrop evaporation in fog occurrences is further emphasized with simulations of a case study characterized by fog forming under light rain falling in a developing frontal inversion. Good agreement is obtained between fog water content observations and simulations representing only the effects of rainfall evaporation. This study demonstrates the need to take into account the nonequilibrium state of falling raindrops for a proper representation of an important mechanism contributing to precipitation fog occurrences.

* Current affiliation: Meteorological Research Division, Recherche en Prévision Numérique, Dorval, Québec, Canada.

Corresponding author address: Dr. Robert Tardif, Atmospheric Science and Technology Directorate, Environment Canada, 2121 Route Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. Email: robert.tardif@ec.gc.ca

Abstract

To gain insights into the poorly understood phenomenon of precipitation fog, this study assesses the evaporation of freely falling drops departing from equilibrium as a possible contributing factor to fog formation in rainy conditions. The study is based on simulations performed with a microphysical column model describing the evolution of the temperature and mass of evaporating raindrops within a Lagrangian reference frame. Equilibrium defines a state where the latent heat loss of an evaporating drop is balanced by the sensible heat flux from the ambient air, hence defining a steady-state drop temperature. Model results show that the assumption of equilibrium leads to small but significant errors in calculated precipitation evaporation rates for drops falling in continuously varying ambient near-saturated or saturated conditions. Departure from equilibrium depends on the magnitude of the vertical gradients of the ambient temperature and moisture as well as the drop-size-dependent terminal velocity. Contrasting patterns of behavior occur depending on the stratification of the atmosphere. Raindrops falling in inversion layers remain warmer than the equilibrium temperature and lead to enhanced moistening, with supersaturation achieved when evaporation proceeds in saturated inversions. Dehydration occurs in layers with temperature and water vapor increasing with height due to the vapor flux from the environment to the colder drops. These contrasts are not represented when equilibrium is assumed. The role of nonequilibrium raindrop evaporation in fog occurrences is further emphasized with simulations of a case study characterized by fog forming under light rain falling in a developing frontal inversion. Good agreement is obtained between fog water content observations and simulations representing only the effects of rainfall evaporation. This study demonstrates the need to take into account the nonequilibrium state of falling raindrops for a proper representation of an important mechanism contributing to precipitation fog occurrences.

* Current affiliation: Meteorological Research Division, Recherche en Prévision Numérique, Dorval, Québec, Canada.

Corresponding author address: Dr. Robert Tardif, Atmospheric Science and Technology Directorate, Environment Canada, 2121 Route Trans-Canada Highway, Dorval, QC H9P 1J3, Canada. Email: robert.tardif@ec.gc.ca

Save