• Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Becker, E., G. Schmitz, and R. Geprägs, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus, 49A , 182199.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and C. S. Vera, 1996: Characteristics of the Southern Hemisphere winter storm track with filtered and unfiltered data. J. Atmos. Sci., 53 , 468481.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50 , 20382053.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28 , 10871095.

  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37 , 26002626.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and I. M. Held, 1989: Barotropic decay of baroclinic waves in a two-layer beta-plane model. J. Atmos. Sci., 46 , 34163430.

    • Search Google Scholar
    • Export Citation
  • Fultz, D., R. R. Long, G. V. Owens, W. Bohan, R. Kaylor, and J. Weil, 1959: Studies of Thermal Convection in a Rotating Cylinder with Some Implications for Large-Scale Atmospheric Motions. Meteor. Monogr., No. 21, Amer. Meteor. Soc., 104 pp.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J., and I. M. Held, 1990: The two-fifths and one-fifth rules for Rossby wave breaking in the WKB limit. J. Atmos. Sci., 47 , 697706.

    • Search Google Scholar
    • Export Citation
  • Hall, N. J., and P. D. Sardeshmukh, 1998: Is the time-mean Northern Hemisphere flow baroclinically unstable? J. Atmos. Sci., 55 , 4156.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and P. J. Phillips, 1987: Linear and nonlinear barotropic decay on the sphere. J. Atmos. Sci., 44 , 200207.

  • Held, I. M., and V. D. Larichev, 1996: Scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53 , 946952.

    • Search Google Scholar
    • Export Citation
  • Herring, J. R., 1980: Statistical theory of quasi-geostrophic turbulence. J. Atmos. Sci., 37 , 969977.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and M. E. McIntyre, 1985: Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161 , 449492.

    • Search Google Scholar
    • Export Citation
  • Kim, H-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58 , 28592871.

    • Search Google Scholar
    • Export Citation
  • Kim, H-K., and S. Lee, 2004: The wave–zonal mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 61 , 10551067.

  • Lachmy, O., and N. Harnik, 2009: A wave amplitude transition in a quasi-linear model with radiative forcing and surface drag. J. Atmos. Sci., 66 , 34793490.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1997: Maintenance of multiple jets in a baroclinic flow. J. Atmos. Sci., 54 , 17261738.

  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50 , 14131428.

  • Lee, S., and S. B. Feldstein, 1996a: Two types of wave breaking in an aquaplanet GCM. J. Atmos. Sci., 53 , 842857.

  • Lee, S., and S. B. Feldstein, 1996b: Mechanism of zonal index evolution in a two-layer model. J. Atmos. Sci., 53 , 22322246.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 271281.

  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems. International Geophysics Series, Vol. 13, Academic Press, 603 pp.

  • Pedlosky, J., 1970: Finite-amplitude baroclinic waves. J. Atmos. Sci., 27 , 1530.

  • Pfeffer, R. L., 1981: Wave–mean flow interactions in the atmosphere. J. Atmos. Sci., 38 , 13401359.

  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48 , 688697.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1988: Irreversible wave–mean flow interactions in a mechanistic model of the stratosphere. J. Atmos. Sci., 45 , 34133430.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63 , 21092122.

  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15 , 167211.

  • Shepherd, T. G., 1988: Nonlinear saturation of baroclinic instability. Part I: The two-layer model. J. Atmos. Sci., 45 , 20142025.

  • Speranza, A., and P. Malguzzi, 1988: The statistical properties of a zonal jet in a baroclinic atmosphere: A semilinear approach. Part I: Quasi-geostrophic, two-layer model atmosphere. J. Atmos. Sci., 45 , 30463062.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35 , 561571.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63 , 33333350.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 24 2
PDF Downloads 24 11 0

Finite-Amplitude Equilibration of Baroclinic Waves on a Jet

Sukyoung LeeDepartment of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A two-layer quasigeostrophic model is used to study the equilibration of baroclinic waves. In this model, if the background flow is relaxed toward a jetlike profile, a finite-amplitude baroclinic wave solution can be realized in both supercritical and subcritical regions of the model’s parameter space. Analyses of the model equations and numerical model calculations indicate that the finite-amplitude wave equilibration hinges on the breaking of Rossby waves before they reach their critical latitude. This “jetward” wave breaking results in an increase in the upper-layer wave generation and a reduction in the vertical phase tilt. This change in the phase tilt has a substantial impact on the Ekman pumping, as it weakens the damping on the lower-layer wave for some parameter settings and enables the Ekman pumping to serve as a source of wave growth at other settings. Together, these processes can account for the O(1)-amplitude wave equilibration.

From a potential vorticity (PV) perspective, the wave breaking reduces the meridional scale of the upper-layer eddy PV flux, which destabilizes the mean flow. This is followed by a strengthening of the lower-layer eddy PV flux, which weakens the lower-layer PV gradient and constrains the growth of the lower-layer eddy PV. The same jetward wave breaking focuses the upper-layer PV flux toward the jet center where the upper-layer PV gradient is greatest. This results in an intensification of the upper-layer eddy PV relative to lower-layer eddy PV. Because of this large ratio, the upper-layer eddy PV plays the primary role in inducing the upper- and lower-layer eddy streamfunction fields, decreasing the vertical phase tilt. As a result, the Ekman pumping on the eddies is weakened, and for some parameter settings the Ekman pumping can even act as a wave source, contributing toward O(1)-amplitude wave equilibration. By reducing the horizontal shear of the zonal wind, the same wave breaking process weakens the barotropic decay, which also contributes to the wave amplification.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: sl@meteo.psu.edu

Abstract

A two-layer quasigeostrophic model is used to study the equilibration of baroclinic waves. In this model, if the background flow is relaxed toward a jetlike profile, a finite-amplitude baroclinic wave solution can be realized in both supercritical and subcritical regions of the model’s parameter space. Analyses of the model equations and numerical model calculations indicate that the finite-amplitude wave equilibration hinges on the breaking of Rossby waves before they reach their critical latitude. This “jetward” wave breaking results in an increase in the upper-layer wave generation and a reduction in the vertical phase tilt. This change in the phase tilt has a substantial impact on the Ekman pumping, as it weakens the damping on the lower-layer wave for some parameter settings and enables the Ekman pumping to serve as a source of wave growth at other settings. Together, these processes can account for the O(1)-amplitude wave equilibration.

From a potential vorticity (PV) perspective, the wave breaking reduces the meridional scale of the upper-layer eddy PV flux, which destabilizes the mean flow. This is followed by a strengthening of the lower-layer eddy PV flux, which weakens the lower-layer PV gradient and constrains the growth of the lower-layer eddy PV. The same jetward wave breaking focuses the upper-layer PV flux toward the jet center where the upper-layer PV gradient is greatest. This results in an intensification of the upper-layer eddy PV relative to lower-layer eddy PV. Because of this large ratio, the upper-layer eddy PV plays the primary role in inducing the upper- and lower-layer eddy streamfunction fields, decreasing the vertical phase tilt. As a result, the Ekman pumping on the eddies is weakened, and for some parameter settings the Ekman pumping can even act as a wave source, contributing toward O(1)-amplitude wave equilibration. By reducing the horizontal shear of the zonal wind, the same wave breaking process weakens the barotropic decay, which also contributes to the wave amplification.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: sl@meteo.psu.edu

Save