• Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longlo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303 , 13371342.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1982: Tropical Cyclones—Their Evolution, Structure, and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208 pp.

  • Arakawa, A., and W. H. Shubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128 , 917946.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135 , 39653989.

    • Search Google Scholar
    • Export Citation
  • Betz, H. D., U. Schumann, and P. Laroche, Eds.,. 2008: Lightning: Principles, Instruments and Applications—Review of Modern Lighting Research. Springer, 641 pp.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radar velocities. J. Atmos. Sci., 53 , 18871909.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802822.

  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56 , 20042028.

  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55 , 22842293.

  • Cecil, D. J., and S. W. Nebitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130 , 785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nebitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130 , 769784.

    • Search Google Scholar
    • Export Citation
  • Chronis, T., E. Williams, E. Anagnostou, and W. Petersen, 2007: African lightning: Indicator of tropical Atlantic cyclone formation. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO400001.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., H. Zhang, G. M. McFarquhar, and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Modif., 39 , 7073.

    • Search Google Scholar
    • Export Citation
  • Demetriades, N. W. S., and R. L. Holle, 2006: Long-range lightning nowcasting applications for tropical cyclones. Preprints, Conf. on Meteorology Application of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., P2.15. [Available online at http://ams.confex.com/ams/pdfpapers/99183.pdf].

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Divine Wind: The History and Science of Hurricanes. Oxford University Press, 296 pp.

  • Falkovich, A. I., A. P. Khain, and I. Ginis, 1995: Motion and evolution of binary tropical cyclones in a coupled atmosphere–ocean numerical model. Mon. Wea. Rev., 123 , 13451363.

    • Search Google Scholar
    • Export Citation
  • Fan, J., M. Ovtchinnikov, J. Comstock, S. McFarlane, and A. Khain, 2009: Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res., 114 , D04205. doi:10.1029/2008JD010782.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 2005: An efficient mixed-phase cloud and precipitation scheme for use in operational NWP models. Proc. Amer. Geophys. Union Spring Meeting, New Orleans, LA, Amer. Geophys. Union, A42A-02.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., L. Leslie, E. Mansell, J. Straka, D. MacGorman, and C. Ziegler, 2007: A high-resolution simulation of microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98 , 1333. doi:10.1007/s00703-006-0237-0.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Iguchi, T., T. Nakajima, A. Khain, K. Saito, T. Takemura, and K. Suzuki, 2008: Modeling the influence of aerosols on cloud microphysical properties in the East Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme. J. Geophys. Res., 113 , D14215. doi:10.1029/2007JD009774.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and A. Pratt, 2008: Saharan dust, lightning and tropical cyclones in the eastern tropical Atlantic during NAMMA-06. Geophys. Res. Lett., 35 , L12804. doi:10.1029/2008GL033979.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., A. S. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35 , L08815. doi:10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42 , 839856.

  • Khain, A. P., 1984: Mathematical Modeling of Tropical Cyclones. Gidrometeoizdat, 247 pp.

  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4 , 015004. doi:10.1088/1748-9326/4/1/015004.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and G. G. Sutyrin, 1983: Tropical Cyclones and Their Interaction with the Ocean. Gidrometeoizdat, 241 pp.

  • Khain, A. P., and E. A. Agrenich, 1987: Possible effect of atmospheric humidity and radiation heating of dusty air on tropical cyclone development. Proc. Inst. Exp. Meteor., 42 , 7780.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43 , 77110.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res., 114 , D19209. doi:10.1029/2009JD011827.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55 , 159224.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. B. Pinsky, M. Shapiro, and A. Pokrovsky, 2001a: Collision rate of small graupel and water drops. J. Atmos. Sci., 58 , 25712595.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2001b: Simulating convective clouds with sustained supercooled liquid water down to −37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28 , 38873890.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61 , 29632982.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131 , 26392663.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. Cohen, B. Lynn, and A. Pokrovsky, 2008a: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65 , 36523677.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008b: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65 , 17211748.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., L. R. Leung, B. Lynn, and S. Ghan, 2009: Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res., 114 , D22203. doi:10.1029/2009JD011902.

    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32 , L14828. doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1973: A scheme of moist convective adjustment. Mon. Wea. Rev., 101 , 547553.

  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008: The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res., 113 , D16202. doi:10.1029/2007JD009224.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer, 386 pp.

  • Lhermitte, R. M., and P. Krehbiel, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., 17 , 162171.

    • Search Google Scholar
    • Export Citation
  • Li, X., W-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009a: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part I: Comparisons. J. Atmos. Sci., 66 , 321.

    • Search Google Scholar
    • Export Citation
  • Li, X., W-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009b: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions. J. Atmos. Sci., 66 , 2240.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., and A. Khain, 2007: Utilization of spectral bin microphysics and bulk parameterization schemes to simulate the cloud structure and precipitation in a mesoscale rain event. J. Geophys. Res., 112 , D22205. doi:10.1029/2007JD008475.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005a: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133 , 4458.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005b: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CAPE rain event with squall line. Mon. Wea. Rev., 133 , 5971.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., and C. S. Keen, 1994: Observations of lightning in convective supercells within tropical storms and hurricanes. Mon. Wea. Rev., 122 , 18971916.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61 , 422439.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99 , 1666516676.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. K. Moore, and V. P. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127 , 520534.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and J. M. Coyne, 1999: Cloud-to-ground lightning in tropical cyclones (1986–1996). Preprints, 23rd Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 194–198.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Pinsky, M., and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128 , 501533.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. P. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58 , 742764.

    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nature Geosci., 2 , 329332. doi:10.1038/NGEO477.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., 1995: A new look at homogeneous ice nucleation in supercooled water drops. J. Atmos. Sci., 52 , 19241933.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Oxford University Press, 963 pp.

  • Rodgers, E., J. Weinman, H. Pierce, and W. Olson, 2000: Tropical cyclone lightning distribution and its relationship to convection and intensity change. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, Amer. Meteor. Soc., 537–541.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys. Discuss., 7 , 56475674.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321 , 13091313.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43 , 182195.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: A binned approach to cloud droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47 , 694703.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32 , 642655.

  • Segal, Y., and A. Khain, 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111 .doi:10.1029/2005JD006561.

    • Search Google Scholar
    • Export Citation
  • Segal, Y., M. Pinsky, A. Khain, and C. Erlick, 2003: Thermodynamic factors influencing bimodal spectrum formation in cumulus clouds. Atmos. Res., 66 , 4364.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92 , 4566.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., A. Khain, U. Blahak, and K. Beheng, 2005: Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J. Atmos. Sci., 62 , 19171931.

    • Search Google Scholar
    • Export Citation
  • Shao, X-M., and Coauthors, 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86 .doi:10.1029/2005EO420004.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., V. Phillips, and J. S. Wettlaufer, 2006: Small ice crystals and the climatology of lightning. Geophys. Res. Lett., 33 , L05804. doi:10.1029/2005GL025242.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., and J. S. Malkus, 1964: Experiments in hurricane modification. Sci. Amer., 211 , 2737.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech Note NCAR-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Tao, W-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112 , D24S18. doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, W. D. Hall, and R. Rasmussen, 2006: A new bulk microphysical parameterization for WRF (& MM5). Proc. Seventh Weather Research and Forecasting User’s Workshop, Boulder, CO, NCAR, 1–11. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session05/5_3_Thompson.pdf].

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of raindrop spectra. Part II. Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46 , 33123327.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1975: Remarks on the mechanism of atmospheric ice nucleation. Proc. Eighth Int. Conf. on Nucleation, Leningrad, U.S.S.R., Gidrometeoizdat, 265–269.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51 , 18431856.

  • Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensational nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110 , D21211. doi:10.1029/2004JD005720.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part 2: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and G. Satori, 2004: Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Solar-Terr. Phys., 66 , 12131231.

    • Search Google Scholar
    • Export Citation
  • Williams, E., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76 , 288306.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., D. P. Jorgensen, R. A. Black, and S. L. Rosenthal, 1985: Project STORMFURY: A scientific chronicle, 1962–1983. Bull. Amer. Meteor. Soc., 66 , 505514.

    • Search Google Scholar
    • Export Citation
  • Yair, Y., B. Lynn, C. Price, V. Kotroni, K. Lagouvardos, E. Morin, A. Mugnai, and M. Llasat, 2009: Predicting the potential for lightning activity in Mediterranean storms based on the WRF model dynamic and microphysical fields. J. Geophys. Res., doi:10.1029/2008JD010868, in press.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34 , L14812. doi:10.1029/2007GL029876.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, W. R. Cotton, and Y. Deng, 2009: Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett., 36 , L06802. doi:10.1029/2009GL037276.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 833 379 53
PDF Downloads 719 288 27

Aerosol Effects on Intensity of Landfalling Hurricanes as Seen from Simulations with the WRF Model with Spectral Bin Microphysics

A. KhainDepartment of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Khain in
Current site
Google Scholar
PubMed
Close
,
B. LynnDepartment of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by B. Lynn in
Current site
Google Scholar
PubMed
Close
, and
J. DudhiaNCAR, Boulder, Colorado

Search for other papers by J. Dudhia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evolution of a superhurricane (Katrina, August 2005) was simulated using the Weather Research and Forecasting Model (WRF; version 3.1) with explicit (nonparameterized) spectral bin microphysics (SBM). The new computationally efficient spectral bin microphysical scheme (FAST-SBM) implemented to the WRF calculates at each time step and in each grid point the size distributions of atmospheric aerosols, water drops, cloud ice (ice crystals and aggregates), and graupel/hail. The tropical cyclone (TC) evolution was simulated during 72 h, beginning with its bypassing the Florida coast (27 August 2005) to its landfall just east of New Orleans, Louisiana (near the end of 29 August). The WRF/SBM was used to investigate the potential impact of aerosols ingested into Katrina’s circulation during its passage through the Gulf of Mexico on Katrina’s structure and intensity. It is shown that continental aerosols invigorated convection largely at TC periphery, which led to its weakening prior to landfall. Maximum weakening took place ∼24 h before landfall, just after its intensity had reached its maximum. The minimum pressure increased by ∼15 hPa, and the maximum velocity decreased up to 15 m s−1. Thus, the model results indicate the existence of another (in addition to a decrease in the surface fluxes) mechanism of weakening of TCs approaching the land. This mechanism is related to effects of continental aerosols involved in the TC circulation. It is shown that aerosols substantially affect the spatial distribution of cloudiness and hydrometeor contents. The evolution of lightning structure within the TC is calculated and compared with that in Katrina. The physical mechanisms of aerosol-induced TC weakening are discussed.

Corresponding author address: Prof. Alexander Khain, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email: khain@vms.huji.ac.il

Abstract

The evolution of a superhurricane (Katrina, August 2005) was simulated using the Weather Research and Forecasting Model (WRF; version 3.1) with explicit (nonparameterized) spectral bin microphysics (SBM). The new computationally efficient spectral bin microphysical scheme (FAST-SBM) implemented to the WRF calculates at each time step and in each grid point the size distributions of atmospheric aerosols, water drops, cloud ice (ice crystals and aggregates), and graupel/hail. The tropical cyclone (TC) evolution was simulated during 72 h, beginning with its bypassing the Florida coast (27 August 2005) to its landfall just east of New Orleans, Louisiana (near the end of 29 August). The WRF/SBM was used to investigate the potential impact of aerosols ingested into Katrina’s circulation during its passage through the Gulf of Mexico on Katrina’s structure and intensity. It is shown that continental aerosols invigorated convection largely at TC periphery, which led to its weakening prior to landfall. Maximum weakening took place ∼24 h before landfall, just after its intensity had reached its maximum. The minimum pressure increased by ∼15 hPa, and the maximum velocity decreased up to 15 m s−1. Thus, the model results indicate the existence of another (in addition to a decrease in the surface fluxes) mechanism of weakening of TCs approaching the land. This mechanism is related to effects of continental aerosols involved in the TC circulation. It is shown that aerosols substantially affect the spatial distribution of cloudiness and hydrometeor contents. The evolution of lightning structure within the TC is calculated and compared with that in Katrina. The physical mechanisms of aerosol-induced TC weakening are discussed.

Corresponding author address: Prof. Alexander Khain, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email: khain@vms.huji.ac.il

Save