• Alishouse, J., , S. Snyder, , J. Vongsathorn, , and R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28 , 811816.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2007: Intercomparison of water vapor data measured with lidar during IHOP_2002. Part I: Airborne to ground-based lidar systems and comparison with chilled-mirror hygrometer radiosondes. J. Atmos. Oceanic Technol., 24 , 321.

    • Search Google Scholar
    • Export Citation
  • Bou Karam, D., , C. Flamant, , P. Knippertz, , O. Reitebuch, , J. Pelon, , M. Chong, , and A. Dabas, 2008: Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region: A representative case-study. Quart. J. Roy. Meteor. Soc., 134 , 621634.

    • Search Google Scholar
    • Export Citation
  • Bou Karam, D., , C. Flamant, , P. Tulet, , M. C. Todd, , J. Pelon, , and E. Williams, 2009: Dry cyclogenesis and dust mobilization in the intertropical discontinuity of the West African Monsoon: A case study. J. Geophys. Res., 114 , D05115. doi:10.1029/2008JD010952.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 1997: LASE validation experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansman et al., Eds., Springer, 289–295.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., , W. B. Grant, , and S. Ismail, 2005: Airborne lidar systems. Laser Remote Sensing, T. Fujii and T. Fukuchi, Eds., Taylor & Francis, 723–779.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., , and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11 , 283297.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., , and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37 , 193213.

  • Diaz, H. F., , T. N. Carlson, , and J. M. Prospero, 1976: A study of the structure and dynamics of the Saharan air layer over the northern equatorial Atlantic during BOMEX. NOAA Tech. Memo. ERL WMPO-32, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., , and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353365.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., , and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan Air Layer: Results from 2002. J. Climate, 21 , 52425243.

    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., , and R. Washington, 2007: Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res., 112 , D03103. doi:10.1029/2006JD007195.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , J. Dunion, , J. A. Foley, , A. K. Heidinger, , and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33 , L19813. doi:10.1029/2006GL026408.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23 , 652653.

  • Ferrare, R. A., and Coauthors, 2000: Comparison of aerosol optical properties and water vapor among ground and airborne lidars and Sun photometers during TARFOX. J. Geophys. Res., 105 , 99179933.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2004: Characterization of upper-troposphere water vapor measurements during AFWEX using LASE. J. Atmos. Oceanic Technol., 21 , 17901808.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., , J-P. Chaboureau, , D. J. Parker, , C. M. Taylor, , J-P. Cammas, , O. Bock, , F. Timouk, , and J. Pelon, 2007: Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African monsoon. Quart. J. Roy. Meteor. Soc., 133 , 11751189.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., , P. Knippertz, , D. J. Parker, , J-P. Chaboureau, , C. Lavaysse, , A. Augusti-Panareda, , and L. Kergoat, 2009: The impact of a mesoscale convective system cold pool on the northward propagation of the intertropical discontinuity over West Africa. Quart. J. Roy. Meteor. Soc., 135 , 139159.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2008: Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0. J. Geophys. Res., 113 , D00C17. doi:10.1029/2008JD010077.

    • Search Google Scholar
    • Export Citation
  • Howell, S. G., , A. D. Clarke, , Y. Shinozuka, , Y. Kapustin, , C. S. McNaughton, , B. J. Huebert, , S. J. Doherty, , and T. L. Anderson, 2006: Influence of relative humidity upon pollution and dust during ACE-Asia: Size distributions and implications for optical properties. J. Geophys. Res., 111 , D06205. doi:10.1029/2004JD005759.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., , and A. Pratt, 2008: Saharan dust, lightning and tropical cyclones in the eastern tropical Atlantic during NAMMA-06. Geophys. Res. Lett., 35 , L12804. doi:10.1029/2008GL033979.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., , A. Pratt, , and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in Eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35 , L08815. doi:10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Kamineni, R., , T. N. Krishnamurti, , R. A. Ferrare, , S. Ismail, , and E. V. Browell, 2003: Impact of high-resolution water vapor cross-sectional data on hurricane forecasting. Geophys. Res. Lett., 30 , 1234. doi:10.1029/2002GL016741.

    • Search Google Scholar
    • Export Citation
  • Kamineni, R., , T. N. Krishnamurti, , S. Pattnaik, , E. V. Browell, , S. Ismail, , and R. A. Ferrare, 2006: Impact of CAMEX-4 datasets for hurricane forecasts using a global model. J. Atmos. Sci., 63 , 151174.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., , and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45 , 31023136.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., , and H. F. Pierce, 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130 , 31003128.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , I. Koren, , L. A. Remer, , D. Tanré, , P. Ginoux, , and S. Fan, 2005: Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res., 110 , D10S12. doi:10.1029/2003JD004436.

    • Search Google Scholar
    • Export Citation
  • Keil, C., , A. Röpnack, , G. C. Craig, , and U. Schumann, 2008: Sensitivity of quantitative precipitation forecast to height-dependent changes in humidity. Geophys. Res. Lett., 35 , L09812. doi:10.1029/2008GL033657.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , D. Rosenfeld, , and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131 , 26392663.

    • Search Google Scholar
    • Export Citation
  • Kooi, S. A., , R. A. Ferrare, , S. Ismail, , E. V. Browell, , M. B. Clayton, , V. G. Brackett, , and J. Halverson, 2002: Comparison of LASE water vapor measurements with dropwindsonde measurements during the Third and Fourth Convection and Moisture Experiments (CAMEX-3 and CAMEX-4). Extended Abstracts, Int. Laser Radar Conf., Montreal, QC, Canada, International Coordination Group for Laser Atmospheric Studies, 693–696.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and D. Oosterhof, 1989: Prediction of the life cycle of a supertyphoon with a high-resolution global model. Bull. Amer. Meteor. Soc., 70 , 12181230.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , G. Rohaly, , and H. S. Bedi, 1994: On the improvement of precipitation forecast skill from physical initialization. Tellus, 46A , 598614.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121 , 17031713.

  • Lau, K. M., , and K. M. Kim, 2007a: Cooling of the Atlantic by Saharan dust. Geophys. Res. Lett., 34 , L23811. doi:10.1029/2007GL031538.

  • Lau, K. M., , and K. M. Kim, 2007b: How nature foiled the 2006 hurricane forecasts. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO090002.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , A. Omar, , Y. Hu, , M. Vaughan, , and D. Winker, cited. 2005: CALIOP algorithm theoretical basis document—Part 3: Scene classification algorithms. Release 1.0, PC-SCI-202, NASA Langley Research Center. [Available online at http://www-calipso.larc.nasa.gov/resources/project_documentation.php].

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2008: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res., 113 , D07207. doi:10.1029/2007JD008878.

    • Search Google Scholar
    • Export Citation
  • McConnell, C. L., and Coauthors, 2008: Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res., 113 , D14S05. doi:10.1029/2007JD009606.

    • Search Google Scholar
    • Export Citation
  • Müller, D., , A. Ansmann, , I. Mattis, , M. Tesche, , U. Wandinger, , D. Althausen, , and G. Pisani, 2007: Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res., 112 , D16202. doi:10.1029/2006JD008292.

    • Search Google Scholar
    • Export Citation
  • Omar, A., , D. Winker, , J. Won, , and M. Vaughan, 2006: Selection algorithm for the CALIPSO lidar aerosol extinction-to-backscatter ratio. Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, Eds., Tokyo Metropolitan University, 937–940.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., , C. Thorncroft, , A. Diedhiou, , T. Lebel, , D. Parker, , and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis (AMMA): An international research project and field campaign. Bull. Amer. Meteor. Soc., 87 , 17391746.

    • Search Google Scholar
    • Export Citation
  • Rizvi, S. R. H., , E. L. Bensman, , T. S. V. Vijaya Kumar, , A. Chakrborty, , and T. N. Krishnamurti, 2002: Impact of CAMEX-3 data on the analysis and forecasts of Atlantic hurricanes. Meteor. Atmos. Phys., 79 , 1332.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , and B. J. Hoskins, 1994a: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120 , 953982.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , and B. J. Hoskins, 1994b: An idealized study of African easterly waves. II: A nonlinear view. Quart. J. Roy. Meteor. Soc., 120 , 9831015.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2009: Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys. Res. Lett., 36 , L01807. doi:10.1029/2008GL035846.

    • Search Google Scholar
    • Export Citation
  • Vance, A. K., , J. P. Taylor, , T. J. Hewison, , and J. Elms, 2004: Comparison of in situ humidity data from aircraft, dropsonde, and radiosonde. J. Atmos. Oceanic Technol., 21 , 921932.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M., 2004: Algorithm for retrieving lidar ratios at 1064 nm from space-based lidar backscatter data. Laser Radar Technology for Remote Sensing, C. Werner, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5240), 104–115.

    • Search Google Scholar
    • Export Citation
  • Wang, J., 2005: Evaluation of the dropsonde humidity sensor using data from DYCOMS-II and IHOP_2002. J. Atmos. Oceanic Technol., 22 , 247257.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2008: Comment on “Atmospheric controls on the annual cycle of North African dust” by S. Engelstaedter and R. Washington. J. Geophys. Res., 113 , D23109. doi:10.1029/2008JD009930.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., , H-S. Bauer, , M. Grezeschik, , A. Behrendt, , F. Vandenberghe, , E. V. Browell, , S. Ismail, , and R. A. Ferrare, 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134 , 209230.

    • Search Google Scholar
    • Export Citation
  • Yorks, J. E., , M. McGill, , S. Rodier, , M. Vaughan, , Y. Hu, , and D. Hlavka, 2009: African dust and smoke influences on radiative effects in the tropical Atlantic using CERES and CALIPSO data. Extended Abstracts, Fourth Symp. on Lidar Atmospheric Applications, Phoenix, AZ, Amer. Meteor. Soc., 8.3. [Available online at http://ams.confex.com/ams/89annual/techprogram/paper_144743.htm].

    • Search Google Scholar
    • Export Citation
  • Zhu, A., , V. Ramanathan, , F. Li, , and D. Kim, 2007: Dust plumes over the Pacific, Indian, and Atlantic Oceans: Climatology and radiative impact. J. Geophys. Res., 112 , D16208. doi:10.1029/2007JD008427.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Coauthors, 2009: The Saharan air layer and the fate of African easterly waves—NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90 , 11371156.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 5
PDF Downloads 18 18 5

LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
  • 2 SSAI, Hampton, Virginia
  • 3 NOAA/AOML/Hurricane Research Division, Miami, Florida
  • 4 NASA Goddard Space Flight Center, College Park, Maryland
  • 5 The Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

The Lidar Atmospheric Sensing Experiment (LASE) on board the NASA DC-8 measured high-resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan air layer (SAL). These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its interactions with AEWs and TCs. Three case studies were selected for detailed analysis: (i) a stratified SAL, with fine structure and layering (unlike a well-mixed SAL), (ii) a SAL with high relative humidity (RH), and (iii) an AEW surrounded by SAL dry air intrusions. Profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in the SAL, convection, and clear air regions. LASE extinction-to-backscatter ratios for the dust layers varied from 35 ± 5 to 45 ± 5 sr, well within the range of values determined by other lidar systems. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively. An analysis of LASE data suggests that the SAL suppresses low-altitude convection. Midlevel convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on 20 August 2008. This interaction is responsible for the transfer of about 7 × 1015 J (or 8 × 103 J m−2) latent heat energy within a day to the SAL. Initial modeling studies that used LASE water vapor profiles show sensitivity to and improvements in model forecasts of an AEW.

Corresponding author address: Syed Ismail, MS 401A, NASA Langley Research Center, Hampton, VA 23681. Email: syed.ismail-1@nasa.gov

This article included in the TCSP NAMMA special collection.

Abstract

The Lidar Atmospheric Sensing Experiment (LASE) on board the NASA DC-8 measured high-resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan air layer (SAL). These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its interactions with AEWs and TCs. Three case studies were selected for detailed analysis: (i) a stratified SAL, with fine structure and layering (unlike a well-mixed SAL), (ii) a SAL with high relative humidity (RH), and (iii) an AEW surrounded by SAL dry air intrusions. Profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in the SAL, convection, and clear air regions. LASE extinction-to-backscatter ratios for the dust layers varied from 35 ± 5 to 45 ± 5 sr, well within the range of values determined by other lidar systems. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively. An analysis of LASE data suggests that the SAL suppresses low-altitude convection. Midlevel convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on 20 August 2008. This interaction is responsible for the transfer of about 7 × 1015 J (or 8 × 103 J m−2) latent heat energy within a day to the SAL. Initial modeling studies that used LASE water vapor profiles show sensitivity to and improvements in model forecasts of an AEW.

Corresponding author address: Syed Ismail, MS 401A, NASA Langley Research Center, Hampton, VA 23681. Email: syed.ismail-1@nasa.gov

This article included in the TCSP NAMMA special collection.

Save