• Bister, M., , and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125 , 26622682.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , and C. L. Ziegler, 1993: Mesoscale downdraft influences on vertical vorticity in a mature mesoscale convective system. Mon. Wea. Rev., 121 , 13371353.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , M. T. Montgomery, , and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63 , 1942.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensititivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50 , 24012426.

    • Search Google Scholar
    • Export Citation
  • Chong, M., , and O. Bousquet, 1999: A mesovortex within a near-equatorial mesoscale convective system during TOGA COARE. Mon. Wea. Rev., 127 , 11451156.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , M. T. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9 , 55875646.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44 , 23242340.

  • Gamache, J. F., , and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110 , 118135.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Colorado State University Department of Atmospheric Science Paper 234, 121 pp.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67 , 3769.

  • Haltiner, G. J., , and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. 2nd ed. Wiley, 477 pp.

  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes Experiment: Investigating tropical cyclogenesis and hurricane intensity change. Bull. Amer. Meteor. Soc., 88 , 867882.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , J. Dudhia, , and S-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134 , 23182341.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Jiang, H., , P. G. Black, , E. J. Zipser, , F. D. Marks, , and E. W. Uhlhorn, 2006: Validation of rain-rate estimation in hurricanes from the stepped frequency microwave radiometer: Algorithm correction and error analysis. J. Atmos. Sci., 63 , 252267.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. Saunders, 2006: A “vortical” hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., , W. G. Cheon, , S. Y. Hong, , and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56 , 241266.

  • Portabella, M., , and A. Stoffelen, 2001: Rain detection and quality control of SeaWinds. J. Atmos. Oceanic Technol., 18 , 11711183.

  • Raymond, D. J., , and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34 , L06811. doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137 , 603631.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., , and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125 , 13771396.

  • Roundy, P. E., , and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Shin, S., , and R. K. Smith, 2008: Tropical-cyclone intensification and predictability in a minimal three-dimensional model. Quart. J. Roy. Meteor. Soc., 134 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , E. A. Ritchie, , G. J. Holland, , J. Halverson, , and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125 , 26432661.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and Nguyen Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135 , 13211335.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., , J. Simpson, , C-H. Sui, , B. Ferrier, , S. Lang, , J. Scala, , M-D. Chou, , and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50 , 673690.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., , M. T. Montgomery, , and N. E. Davidson, 2006a: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. J. Atmos. Sci., 63 , 30773090.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., , M. T. Montgomery, , N. E. Davidson, , and J. D. Kepert, 2006b: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation. J. Atmos. Sci., 63 , 30913113.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134 , 563582.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., , and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92 , 95919613.

  • Verlinde, J., , and W. R. Cotton, 1990: A mesoscale vortex couplet observed in the trailing anvil of a multicellular convective complex. Mon. Wea. Rev., 118 , 9931010.

    • Search Google Scholar
    • Export Citation
  • Yu, C-K., , B. J-D. Jou, , and B. F. Smull, 1999: Formative stage of a long-lived mesoscale vortex observed by airborne Doppler radar. Mon. Wea. Rev., 127 , 838857.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., , and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 15
PDF Downloads 20 20 7

Simulation and Interpretation of the Genesis of Tropical Storm Gert (2005) as Part of the NASA Tropical Cloud Systems and Processes Experiment

View More View Less
  • 1 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 2 Naval Postgraduate School, Monterey, California, and NOAA/AOML Hurricane Research Division, Miami, Florida
  • 3 Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado
  • 4 Department of Meteorology, The Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

Several hypotheses have been put forward for the mechanisms of generation of surface circulation associated with tropical cyclones. This paper examines high-resolution simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during NASA’s Tropical Cloud Systems and Processes Experiment, to investigate the development of low-level circulation and its relationship to the precipitation evolution. Two simulations are examined: one that better matches available observations but underpredicts the storm’s minimum sea level pressure and a second one that somewhat overintensifies the storm but provides a set of simulations that encapsulates the overall genesis and development characteristics of the observed storm. The roles of convective and stratiform precipitation processes within the mesoscale precipitation systems that formed Gert are discussed. During 21–25 July, two episodes of convective system development occurred. In each, precipitation system evolution was characterized by intense and deep convective upward motions followed by increasing stratiform-type vertical motions (upper-level ascent, low-level descent). Potential vorticity (PV) in convective regions was strongest at low levels while stratiform-region PV was strongest at midlevels, suggesting that convective processes acted to spin up lower levels prior to the spinup of middle levels by stratiform processes. Intense vortical hot towers (VHTs) were prominent features of the low-level cyclonic vorticity field. The most prominent PV anomalies persisted more than 6 h and were often associated with localized minima in the sea level pressure field. A gradual aggregation of the cyclonic PV occurred as existing VHTs near the center continually merged with new VHTs, gradually increasing the mean vorticity near the center. Nearly concurrently with this VHT-induced development, stratiform precipitation processes strongly enhanced the mean inflow and convergence at middle levels, rapidly increasing the midlevel vorticity. However, the stratiform vertical motion profile is such that while it increases midlevel vorticity, it decreases vorticity near the surface as a result of low-level divergence. Consequently, the results suggest that while stratiform precipitation regions may significantly increase cyclonic circulation at midlevels, convective vortex enhancement at low to midlevels is likely necessary for genesis.

Corresponding author address: Scott Braun, NASA GSFC, Code 613.1, Greenbelt, MD 20771. Email: scott.a.braun@nasa.gov

This article included in the TCSP NAMMA special collection.

Abstract

Several hypotheses have been put forward for the mechanisms of generation of surface circulation associated with tropical cyclones. This paper examines high-resolution simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during NASA’s Tropical Cloud Systems and Processes Experiment, to investigate the development of low-level circulation and its relationship to the precipitation evolution. Two simulations are examined: one that better matches available observations but underpredicts the storm’s minimum sea level pressure and a second one that somewhat overintensifies the storm but provides a set of simulations that encapsulates the overall genesis and development characteristics of the observed storm. The roles of convective and stratiform precipitation processes within the mesoscale precipitation systems that formed Gert are discussed. During 21–25 July, two episodes of convective system development occurred. In each, precipitation system evolution was characterized by intense and deep convective upward motions followed by increasing stratiform-type vertical motions (upper-level ascent, low-level descent). Potential vorticity (PV) in convective regions was strongest at low levels while stratiform-region PV was strongest at midlevels, suggesting that convective processes acted to spin up lower levels prior to the spinup of middle levels by stratiform processes. Intense vortical hot towers (VHTs) were prominent features of the low-level cyclonic vorticity field. The most prominent PV anomalies persisted more than 6 h and were often associated with localized minima in the sea level pressure field. A gradual aggregation of the cyclonic PV occurred as existing VHTs near the center continually merged with new VHTs, gradually increasing the mean vorticity near the center. Nearly concurrently with this VHT-induced development, stratiform precipitation processes strongly enhanced the mean inflow and convergence at middle levels, rapidly increasing the midlevel vorticity. However, the stratiform vertical motion profile is such that while it increases midlevel vorticity, it decreases vorticity near the surface as a result of low-level divergence. Consequently, the results suggest that while stratiform precipitation regions may significantly increase cyclonic circulation at midlevels, convective vortex enhancement at low to midlevels is likely necessary for genesis.

Corresponding author address: Scott Braun, NASA GSFC, Code 613.1, Greenbelt, MD 20771. Email: scott.a.braun@nasa.gov

This article included in the TCSP NAMMA special collection.

Save