• Baker, B., , and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45 , 12821290.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , H. Jonsson, , W. Dawson, , D. O’Connor, , and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60 , 251264.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., 2003: Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements. J. Geophys. Res., 108 , 4573. doi:10.1029/2003JD003469.

    • Search Google Scholar
    • Export Citation
  • Downing, H. D., , and D. Williams, 1975: Optical constants of water in the infrared. J. Geophys. Res., 80 , 16561661.

  • Field, P. R., , R. Wood, , P. R. A. Brown, , P. H. Kaye, , E. Hirst, , R. Greenaway, , and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20 , 249261.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64 , 43464365.

    • Search Google Scholar
    • Export Citation
  • Francis, P. N., , J. S. Foot, , and A. J. Baran, 1999: Aircraft measurements of solar and infrared radiative properties of cirrus and their dependence on ice crystal shape. J. Geophys. Res., 104 , 3168531695.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and Coauthors, 2005: Evolution of a Florida cirrus anvil. J. Atmos. Sci., 62 , 23522372.

  • Gayet, J-F., and Coauthors, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the Southern Hemisphere during INCA. Quart. J. Roy. Meteor. Soc., 132 , 27192748.

    • Search Google Scholar
    • Export Citation
  • Giraud, V., , J. C. Buriez, , Y. Fouquart, , F. Parol, , and G. Seze, 1997: Large-scale analysis of cirrus clouds from AVHRR data: Assessment of both a microphysical index and the cloud-top temperature. J. Appl. Meteor., 36 , 664674.

    • Search Google Scholar
    • Export Citation
  • Giraud, V., , O. Thouron, , J. Reidi, , and P. Goloub, 2001: Analysis of direct comparison of cloud top temperature and infrared split window signature against independent retrievals of cloud thermodynamic phase. Geophys. Res. Lett., 28 , 983986.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., 1976: Measurements of size, concentration and structure of atmospheric particulates by the airborne continuous particle replicator. Air Force Geophysics Laboratory Rep. AFGL-TR-76-0149, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A., , and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48 , 11001116.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2003: Properties of tropical and mid-latitude ice cloud ensembles. Part II: Applications for mesoscale and climate models. J. Atmos. Sci., 60 , 25922611.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34 , L23812. doi:10.1029/2007GL030951.

  • Heymsfield, A. J., , S. Lewis, , A. Bansemer, , J. Iaquinta, , L. M. Miloshevich, , M. Kajikawa, , C. Twohy, , and M. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud properties. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , and C. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64 , 10471067.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and emissivity determination of semitransparent cirrus clouds by bispectral measurements in the 10-μm window region. J. Meteor. Soc. Japan, 63 , 8898.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., 2004: Cirrus clouds parameterization for global climate models (GCMs) and North American (Mexican) monsoon modeling study. Ph.D. dissertation, University of Nevada, Reno, 181 pp.

  • Ivanova, D., , D. L. Mitchell, , W. P. Arnott, , and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. Atmos. Res., 59–60 , 89113.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys., 9 , 55195537.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds: Their Formation, Optical Properties, and Effects, P.V. Hobbs and A. Deepak, Eds., Academic Press, 15–91.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , and G. A. Isaac, 2003: Roundness and aspect ratios of particles in ice clouds. J. Atmos. Sci., 60 , 17951808.

  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9 , 35053522.

  • Lawson, R. P., , B. Baker, , B. Pilson, , and Q. Mo, 2006a: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63 , 31863203.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , D. O’Conner, , P. Zmarzly, , K. Weaver, , B. Baker, , Q. Mo, , and F. Jonnson, 2006b: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23 , 14621477.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53 , 24012422.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and A. J. Heymsfield, 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiation transfer: Results from CEPEX. J. Atmos. Sci., 54 , 21872200.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , J. Um, , M. Freer, , D. Baumgardner, , G. Kok, , and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34 , L13803. doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48 , 18851899.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2000: Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57 , 13111326.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiation transfer: General definition, applications, and limitations. J. Atmos. Sci., 59 , 23302346.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51 , 817832.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62 , 16371644.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and R. P. d’Entremont, 2008: Satellite remote sensing of small ice crystal concentrations in cirrus clouds. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, 185–188.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , R. Zhang, , and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , A. Macke, , and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53 , 29672988.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , A. J. Baran, , W. P. Arnott, , and C. Schmitt, 2006a: Testing and comparing the modified anomalous diffraction approximation. J. Atmos. Sci., 63 , 29482962.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , A. Huggins, , and V. Grubisic, 2006b: A new snow growth model with application to radar precipitation estimates. Atmos. Res., 82 , 218.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , P. J. Rasch, , D. Ivanova, , G. M. McFarquhar, , and T. Nousiainen, 2008: Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations. Geophys. Res. Lett., 35 , L09806. doi:10.1029/2008GL033552.

    • Search Google Scholar
    • Export Citation
  • Moncet, J-L., , G. Uymin, , A. E. Lipton, , and H. E. Snell, 2008: Infrared radiance modeling by optimal spectral sampling. J. Atmos. Sci., 65 , 39173934.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., , P. J. Minnett, , and P. van Delst, 2008: Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations. Appl. Opt., 47 , 37013721. doi:10.1364/AO.47.003701.

    • Search Google Scholar
    • Export Citation
  • Parol, F., , J. C. Buriez, , G. Brogniez, , and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30 , 973984.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1997: A parameterization of the visible extinction coefficient of ice clouds in terms of the ice/water content. J. Atmos. Sci., 54 , 20832098.

    • Search Google Scholar
    • Export Citation
  • Ryan, B., 1996: On the global variation of precipitating layer clouds. Bull. Amer. Meteor. Soc., 77 , 5370.

  • Sanderson, B. M., , C. Piani, , W. J. Ingram, , D. A. Stone, , and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30 , 175190.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., , and A. J. Heymsfield, 2009: The size distribution and mass weighted terminal velocity of low-latitude tropopause cirrus crystal populations. J. Atmos. Sci., 66 , 20132028.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , A. J. Schanot, , and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14 , 197202.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , J. W. Strapp, , and M. Wendisch, 2003: Performance of a counterflow virtual impactor in the NASA icing research tunnel. J. Atmos. Oceanic Technol., 20 , 781790.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113 , D14220. doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., , P. Yang, , and P. Pilewskie, 2007: Effects of ice crystal habit on thermal infrared radiative properties and forcing of cirrus. J. Geophys. Res., 112 , D08201. doi:10.1029/2006JD007899.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , H. Wei, , H-L. Huang, , B. A. Baum, , Y. X. Hu, , G. W. Kattawar, , M. I. Mishchenko, , and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44 , 55125523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 7
PDF Downloads 18 18 6

Inferring Cirrus Size Distributions through Satellite Remote Sensing and Microphysical Databases

View More View Less
  • 1 Desert Research Institute, Reno, Nevada
  • 2 Atmospheric and Environmental Research, Inc., Lexington, Massachusetts
  • 3 SPEC, Inc., Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Since cirrus clouds have a substantial influence on the global energy balance that depends on their microphysical properties, climate models should strive to realistically characterize the cirrus ice particle size distribution (PSD), at least in a climatological sense. To date, the airborne in situ measurements of the cirrus PSD have contained large uncertainties due to errors in measuring small ice crystals (D ≲ 60 μm). This paper presents a method to remotely estimate the concentration of the small ice crystals relative to the larger ones using the 11- and 12-μm channels aboard several satellites. By understanding the underlying physics producing the emissivity difference between these channels, this emissivity difference can be used to infer the relative concentration of small ice crystals. This is facilitated by enlisting temperature-dependent characterizations of the PSD (i.e., PSD schemes) based on in situ measurements.

An average cirrus emissivity relationship between 12 and 11 μm is developed here using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument and is used to “retrieve” the PSD based on six different PSD schemes. The PSDs from the measurement-based PSD schemes are compared with corresponding retrieved PSDs to evaluate differences in small ice crystal concentrations. The retrieved PSDs generally had lower concentrations of small ice particles, with total number concentration independent of temperature. In addition, the temperature dependence of the PSD effective diameter De and fall speed Vf for these retrieved PSD schemes exhibited less variability relative to the unmodified PSD schemes. The reduced variability in the retrieved De and Vf was attributed to the lower concentrations of small ice crystals in the retrieved PSD.

Corresponding author address: Dr. David L. Mitchell, Desert Research Institute, Division of Atmospheric Sciences, Reno, NV 89512-1095. Email: mitch@dri.edu

Abstract

Since cirrus clouds have a substantial influence on the global energy balance that depends on their microphysical properties, climate models should strive to realistically characterize the cirrus ice particle size distribution (PSD), at least in a climatological sense. To date, the airborne in situ measurements of the cirrus PSD have contained large uncertainties due to errors in measuring small ice crystals (D ≲ 60 μm). This paper presents a method to remotely estimate the concentration of the small ice crystals relative to the larger ones using the 11- and 12-μm channels aboard several satellites. By understanding the underlying physics producing the emissivity difference between these channels, this emissivity difference can be used to infer the relative concentration of small ice crystals. This is facilitated by enlisting temperature-dependent characterizations of the PSD (i.e., PSD schemes) based on in situ measurements.

An average cirrus emissivity relationship between 12 and 11 μm is developed here using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument and is used to “retrieve” the PSD based on six different PSD schemes. The PSDs from the measurement-based PSD schemes are compared with corresponding retrieved PSDs to evaluate differences in small ice crystal concentrations. The retrieved PSDs generally had lower concentrations of small ice particles, with total number concentration independent of temperature. In addition, the temperature dependence of the PSD effective diameter De and fall speed Vf for these retrieved PSD schemes exhibited less variability relative to the unmodified PSD schemes. The reduced variability in the retrieved De and Vf was attributed to the lower concentrations of small ice crystals in the retrieved PSD.

Corresponding author address: Dr. David L. Mitchell, Desert Research Institute, Division of Atmospheric Sciences, Reno, NV 89512-1095. Email: mitch@dri.edu

Save